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Abstract

This paper demonstrates the benefit of applying the Gait-Energy Image (GEI) [15]
and Histograms of Oriented Gradients (HOG) [12] descriptors for action recognition.
Multi-class Support Vector Machine (SVM) classification show promising results at
100% using leave-one-out cross validation. Furthermore, this technique gains 27◦ view-
point tolerance and robustness to occlusions, clothing and carrying condition variations.
The contribution of this paper is two-fold. The first employs a traditional gait recogni-
tion representation alongside HOG descriptors for action recognition, while the second
decomposes actions into static and dynamic classes for superior performance and reduced
processing time.

1 Introduction
Action recognition is a hot topic in the computer vision community, where various tech-
niques achieve high success despite the introduction of more complex and realistic datasets.
Potential applications include visual surveillance, human-computer interaction and video in-
dexing. Humans have investigated action performance since the 15th Century [18] starting
with anatomical studies and progressing to biomechanical research, cinematography and mo-
tion perception before emerging to the computer vision techniques employed today. While
humans can easily label actions, replicating performance with computer vision is challeng-
ing. There are a number of surveys available on action recognition, where recent examples
include Poppe [25] and Aggarwal and Ryoo [1].

This paper presents a new action recognition technique combining the Gait-Energy Im-
age (GEI) representation, Histograms of Oriented Gradients (HOG) descriptors and multi-
class SVM classification. This technique for action recognition assumes the following: all
subjects are healthy, viewed from the side or 0◦ view, single person performing a single ac-
tion per sequence and actions are pre-classified as static or dynamic.

While all actions follow the same fundamental pattern of movement, variations relating
to magnitude and timing occur, and unlike gait recognition, action recognition generalises
over such variations forming an action label. Action labels resembling broad natured verbs
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are desired to be comprehensible to humans without action-specific knowledge.

Covariate factors are the challenges faced during action recognition which can affect the
appearance and performance [2] of an action and cause decreasing performance. Action
recognition relies on discriminative features, and covariate factors tend to determine the best
suited representation, features and classification technique. Common covariate factors em-
ployed within datasets are clothing, carrying condition, occlusion, lighting, ground surface
and viewpoint variations. It is desirable to test an algorithm initially on a dataset containing
no covariates, as low performance here suggests the lack of robustness and ability.

Contributions
This paper investigates the performance of the GEI, traditionally employed for gait recogni-
tion, alongside HOG descriptors to form a global grid-based approach [25] to action recog-
nition. HOG is traditionally applied to RGB or grey-scale images which contain wide spread
gradients, however the GEI produces a space- and time-normalised figure from a binary sil-
houette sequence where areas containing little to no gradients exist. With this, a number of
gradient filters, cell and bin sizes and SVM kernels, including those commonly employed
for HOG descriptors, are evaluated. This paper performs action recognition based on the
combination of the GEI, HOG and SVM, where the contribution is as follows:

• deployment of the GEI due to the single compact 2D representation over a silhouette
sequence, reduced processing time and noising mitigating attributes, combined with
HOG descriptors employing various gradient filter, cell and bin sizes

• performance evaluation of all actions versus decomposition into static and dynamic
action classes for reduced processing time

The paper is organised as follows: Section 2 presents related work to the applied tech-
niques and state-of-the-art approaches in action recognition, Section 3 describes the action
recognition framework, covering GEI representation and HOG descriptors, Section 4 de-
scribes the dataset employed, action decomposition, SVM techniques and the results from
the best performing HOG parameters and SVM kernels, and Sections 5 and 6 discuss and
conclude the results given all variables respectively and highlights details of future work.

2 Related Work
Action recognition is a popular research topic and performance remains high despite intro-
duction of more challenging datasets. The following techniques are highlighted based upon
popularity, performance and state-of-the-art.

A similar global representation is the enhanced GEI (EGEI) [21] which is derived from
the GEI. The EGEI enhances the dynamic sections due to their discriminative power, where
2D Principle Component Analysis is employed for dimensionality reduction and nearest
neighbour classification is employed for action recognition. Despite the attractive perfor-
mance, further robustness evaluation is required. Fusion of motion and shape features, by
Sun et al. [29], is presented for gait recognition as opposed to action recognition. Motion
features based on shape variation-based (SVB) frieze pattern provide robustness to carrying
condition, while shape features employ the GEI. Dynamic time warping (DTW) is required
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to match the motion features due to sequence length variation, and dimensionality reduction
is applied using coupled subspaces analysis (CSA) and discriminant analysis with tensor
representation (DATER). Despite individual features performing well, fusion is more ben-
eficial for robustness to covariate factors. To combat viewpoint variance, Lin et al. [22]
compute three GEIs from different views for each action. A less time intensive minimum
incremental coding length (MICL) classification approach is applied to each GEI where a
majority wins technique concludes the action class. Furthermore, the size of GEI is anal-
ysed to investigate performance given the trade off between reduced space and processing
time versus data quality. The direction of GEIs is also questioned where those same facing
produce superior results. While this technique has competitive results, further analysis is
required on alternative covariate factors. Closely related representations to the GEI are the
Motion-Energy Image (MEI) and Motion-History Image (MHI) [6], each producing alter-
native features shown in Table 1. The MEI and MHI representations demonstrate where and
how motion occurs respectively and contain dynamic, and dynamic and temporal features re-
spectively. In comparison, the GEI contains static and dynamic features which are desirable
given the temporal aspect may only be matched during specific stages of action performance,
and static information alone only shows the overall shape of action.

Features MEI MHI GEI
Static No No Yes
Dynamic Yes Yes Yes
Temporal No Yes No

Table 1: Comparing Motion- and Gait- Energy and History Images

Local descriptors, implemented by Dalal and Triggs [12], show HOG descriptors de-
tecting humans in still images. Later expansion enables classification of actions [19] and
gender [7]. Dalal and Triggs [12] claim an accurate gradient filter with no smoothing is
essential for person detection due to the associated lower miss rate. The best performing
gradient filter for the application is a 1D centred mask with a miss rate of 11%. However of
those filters evaluated, the Sobel filter ranks last, with a 3% higher hit rate. HOG descrip-
tor performance may vary based gradient filter, cell and bin size, application and dataset.
Laptev et al. [19] use a Hessian detector and HOG and Histograms of Optical Flow (HOF)
descriptors alongside a Bag-of-Features (BoF) representation to perform action recognition
on simple and realistic datasets. Results indicate HOF outperforms HOG on both simple and
realistic datasets, where descriptor combination produces competitive results. Performance
is lower on realistic datasets due to complexity, since content includes sequences from televi-
sion or film sources where body views are commonly partial, whereas simple datasets show
full body views. Such local representations are attractive since person detection is not re-
quired, however initial application here is geared towards full body views where background
modelling is permitted.

3 Action Recognition Framework
The framework for action recognition is composed of action representation and descrip-
tor computation. While global representations produce a quantity of features, sensitivity to
noise, occlusion and viewpoint occurs; however deployment of global grid-based represen-
tations combats the aforementioned pitfalls and requires a global representation with a local
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descriptor. While the GEI is traditionally employed for gait recognition, the associated at-
tributes lend themselves to action recognition. The HOG descriptor is a popular technique
not restricted to action recognition, and the gradient filter and cell and bin size require inves-
tigation given the alternative representation.

GEI Representation

The GEI, by Han and Bhanu [15], is a global appearance representation successfully em-
ployed for gait recognition, and has attributes attractive for action recognition. The GEI,
shown in Figure 1, reflects the overall silhouette structure and corresponding changes during
action performance and expresses static and dynamic information. The GEI is defined by
equation 1:

G(x,y) =
1
N

N

∑
t=1

Bt(x,y) (1)

where G(x,y) is the GEI, N is the number of frames, t is the frame number, x and y are the
2D spatial image coordinates and Bt(x,y) is the silhouette.

The representation is named such as each silhouette is the space-normalised energy im-
age of the action at a specified time and the time-normalised accumulative energy image of
the silhouette during action performance. The higher intensity pixels indicate static areas,
while lower intensity pixels highlight dynamic portions of the performed action respectively.

Figure 1: Exemplar Gait-Energy Images created from the Weizmann Action Dataset showing
from left to right: jumping jack, run, gallop sideways and two-hand wave.

The GEI has a number of attractive attributes which lend themselves to action recogni-
tion. Compared to binary silhouette sequences, the GEI is a compact 2D image reducing spa-
tial and processing requirements. Furthermore, noise mitigation occurs due to time normali-
sation [15]. Image pre-processing is required for GEI construction and requires background
subtraction, size normalisation and horizontal alignment of silhouettes. While robustness to
short term occlusion exists, the GEI benefits from construction at a view which expresses
the most dynamic information, which for walking is a side view where the swing of the arms
and legs is visible. Furthermore, the GEI size has shown to affect performance [22], and
may be of interest considering data resolution.
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HOG Descriptor

Figure 2: Process for computing HOG descriptors, image adapted from [12].

The HOG descriptor, proposed by Dalal and Triggs [12], enables human detection in still
images using the process illustrated in Figure 2. HOG is a local descriptor and is commonly
employed for local representations. Primary variables of interest for action recognition are
gradient filter and cell and bin size. Various gradient filters are available ranging in accuracy
and computational complexity, where performance is linked to gradient computation and
large parameter values produce high dimensionality feature vectors.

HOG descriptors are computed in five stages. Gamma/colour normalisation can be per-
formed, but has little impact due to subsequent normalisation. The image is initially divided
into cells prior to gradient computation. Each pixel contributes a weighted vote using the
L2− norm to the gradient orientation, and votes are aggregated into orientation bins over
cells. Cells can be rectangular or radial and orientation bins are evenly spaced over 0◦-180◦

or 0◦-360◦. Orientation voting is based on gradient magnitude values. Gradient magnitude
strength varies with illumination and contrast, where contrast normalisation is vital for in-
creased performance and invariance to illumination and shadows. Normalisation groups cells
into blocks, where blocks overlap and cells contribute multiple times to the final descriptor,
subsequently increasing performance. Two block geometries can be employed, rectangular
(R-HOG) where square or rectangular blocks are partitioned into square or rectangular cells,
or circular (C-HOG) where circular blocks are partitioned into cells in a log-polar fashion.
R-HOG and C-HOG are similar in nature to Scale-Invariant Feature Transform (SIFT) and
Shape Contexts respectively.

Most HOG descriptors are applied to RGB or grey-scale images, however the GEI does
not contain wide spread gradients. Considering this difference, a range of cell and bin sizes
and gradient filters of varying accuracy and computational complexity require investigation.
Henceforth, the results are based on HOG [24] for grey-scale images using the following
properties: six gradient filters, ten cell and bin sizes and R-HOG.

Estimating Image Derivatives

Dalal and Triggs [12] present HOG performance with deployment of a proper finite differ-
ence approximation for image gradient computation, where the simple central finite differ-
ence approximation achieves superior performance compared to the Sobel filter and alterna-
tive gradient filters widely employed in image processing [12].

In this paper four more gradient filters are investigated in addition to the standard central
difference scheme and Sobel kernel, where further information can be found in [3, 20].

β f ′i−2 +α f ′i−1 + f ′i +α f ′i+1 +β f ′i+2 = c
fi+3− fi−3

6
+b

fi+2− fi−2

4
+a

fi+1− fi−1

2
, (2)
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where the set of parameters {α,β ,a,b,c} is defined either by

α = 0.5771439, β = 0.0896406
a = 1.302566, b = 0.99355, c = 0.03750245

}
Lele scheme (3)

as suggested by Lele [20], or by

α =
3
5
, β =

21
200

, a =
63
50

, b =
219
200

, c =
7

125

}
Fourier-Pade-Galerkin scheme (4)

as proposed in [3].

Dx =
1

2(w+2)

−1 0 1
w 0 w
−1 0 1

 (5)

where Bickley [4] and Scharr [17] set w = 4 and w = 10/3 respectively.
Both (2), (3) and (2), (4) deliver very accurate approximations of the 1st-order derivative

not only for low frequencies but also for middle-range frequencies, while (5) produces supe-
rior orientations compared to magnitude values with the lowest computational expense. The
schemes (2), (3) and (2), (4) are called implicit since they require solving a system of linear
equations, so we call (5) explicit schemes.

4 Results

Figure 3: Weizmann Dataset showing frames from normal (left four) and deformation (right
four) sequences.

Dataset

The Weizmann dataset contains three separate datasets (Figure 3). The first contains normal
sequences and ten actions (run, walk, skip, jump, gallop sideways, one-hand wave, two-hand
wave, bend, jump in place and jumping jack). The background is static permitting simple
background subtraction. The remaining datasets are employed for robustness evaluation and
contain varying viewpoints (0◦ to 81◦ in increments of 9◦) and deformations (walk with a
dog, swing a bag, wear a skirt, occluded feet, occluded by a pole, sleepwalk, walk with
a limp, walk with knees up and walk with a briefcase). All datasets contain horizontally
aligned silhouettes, therefore only height normalisation is required for GEI construction.

Action Class Decomposition
Considering GEI gradient distribution, strong gradients are restricted to dynamic areas,
which for dynamic actions is widespread while limited to limb locations for static actions.
Furthermore, dividing actions prior to classification promotes reduced processing time, and
can be performed during pre-processing via silhouette analysis and a threshold based on
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global translation. Performance of all actions versus static and dynamic actions is analysed.
For the Weizmann dataset, static actions are defined as one-hand wave, two-hand wave, bend,
jump in place and jumping jack, while dynamic actions are run, walk, skip, jump and gallop
sideways.

SVM
SVMs [10] are a supervised learning technique widely employed for classification within
computer vision and require a training and classification stage. Five kernels are employed
to investigate performance: Linear, Quadratic, Polynomial, Gaussian Radial Basis Func-
tion and Multilayer Perceptron. Multi-class SVM is performed as one-versus-all (OVA) and
one-versus-one (OVO) binary classification. OVA is a winner-takes-all approach which is
heuristic to some degree [27], while OVO requires more classifiers than OVA leading to
higher computational complexity. High dimensional feature vectors are not favourable for
SVM with limited computational system [11]. Leave-one-out cross validation is applied for
each sequence obtaining an average correct classification value enabling evaluation of HOG
variables (gradient filter, cell and bin size) and performance against alternative techniques
employing the Weizmann dataset.

Weizmann Dataset Results
The HOG variables of interest are gradient filter and cell and bin sizes, where gradient filters
vary in accuracy and computational complexity, while ten cell and bin sizes are investigated,
where large values produce high dimensionality feature vectors. The first dataset, containing
normal sequences, is employed to evaluate performance of all gradient filters and cell and bin
sizes, where the best performing variables are evaluated on covariate factor sequences. While
both OVA and OVO SVM results are investigated, the OVA results are poor in comparison to
OVO, where similar results are observed by Hsu and Lin [16]. A linear kernel continually
outperforms alternatives and indicates data is easily separable. The results for Linear OVO
SVM can be seen in Figure 4, where normal and covariate factor sequences are shown on
the left and right respectively for the top two performing gradient filters for all and static and
dynamic actions, where associated cell and bin sizes are shown on the bottom right. While
a number of gradient filters are employed for analysis, evaluation is performed on a single
dataset and application to more datasets of varying complexity is required to avoid bias and
achieve a more comprehensive evaluation of HOG parameters. While silhouette masks are
normalised in direction of travel, analysis of GEIs with different directions [22] is required
to determine robustness.

5 Discussion
Normal Action Recognition Results

The results for normal action recognition are shown on the left of Figure 4, where perfor-
mance of static and dynamic actions is summed for comparison against that of all actions.
The optimum parameters for all and static and dynamic actions are not shared, where static
and dynamic actions outperforms all actions by 1.11%, which while a small margin, in-
dicates the different parameter requirements likely due to gradient distribution in the GEI.
Further decomposing the results, dynamic actions tend to outperform the static by 2.22%.
The best performing gradient filters for all and static and dynamic actions are the explicit
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Figure 4: Results for action (left) and covariate factor recognition (right) with corresponding
cell and bin sizes (bottom right)

Bickley and Scharr Schemes (100%) and Fourier-Padé-Galerikin and Lele (98.89%) respec-
tively. Considering individual parameter requirements, all actions require a large bin and
cell size, while the static and dynamic actions require small bin and large cell size and large
bin and small cell size respectively. The difference in static and dynamic parameters further
highlights the necessity for alternative parameters. As a general rule, small bin and cell sizes
perform poorly, however the aforementioned parameters generally perform well over gradi-
ent filters and performance is generally high. The best combination of parameters is better
chosen after evaluation under covariate factors as a trade off in decreased performance may
be required for increased robustness, therefore these parameter combinations are evaluated
under the viewpoint variation and deformations from the Weizmann dataset. While 100%
performance is achieved when actions are split into static and dynamic classes, this perfor-
mance is very unlikely in real world data, but promotes the ability of the technique of GEI,
HOG and SVM for action recognition given good quality data.

Covariate Factor Recognition Results

The results for covariate factor action recognition are shown on the right of Figure 4. Given
covariate factor sequences are based on walk, only dynamic actions are evaluated where the
best performing HOG parameters are further evaluated. While it is desirable for high perfor-
mance across viewpoint variance and deformation, the latter is of greater importance since
viewpoint analysis will be performed during future work.

Superior robustness is seen for all compared to static and dynamic actions particularly
during deformation sequences. For the dynamic actions, the Fourier-Padé-Galerikin filter
achieves poorest performance in robustness to viewpoint variation and deformation, while
Lele achieves superior robustness with 27◦ and 18◦ tolerance and 70% and 80% to view-
point variance and deformation respectively cell size dependent. All actions shows 100%
classification during deformation, and viewpoint variance matches Lele with 27◦ tolerance.
Overall, dynamic action parameters appear more sensitive, where misclassification is caused
by occlusion of the discriminative GEI areas (walk with dog) or normal pattern of walk not
being performed (walk with knees up, limp and sleepwalk). The lack of robustness may be
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due to the larger parameter sizes given smaller values promote a degree of invariance to local
geometric and photometric transformation if smaller than the bin size [12]

Given similar results during normal action recognition, evaluation of all versus static and
dynamic actions is therefore based on robustness. Static and dynamic actions achieve su-
perior performance during normal sequences and faster classification at the cost of reduced
robustness. A trade-off between performance, robustness and classification speed occurs.
Overall, static and dynamic actions offer more in comparison to all actions through applica-
tion of a Lele filter and a bin and cell size of 21 and 2 respectively. This conclusion requires
further evaluation on alternative and more complex datasets to avoid bias to the Weizmann
dataset.

6 Conclusion
This paper demonstrates the benefit of combining GEI, HOG and SVM for action recognition
purposes where actions split into static and dynamic action classes are superior, and perfor-
mance at 100% is encouraging, with a 27◦ viewpoint tolerance and robustness to covariate
factors. Implementation of a global grid-based approach has shown a degree of invariance
to occlusion, viewpoint and noise, however performance relies on the visibility of discrimi-
native dynamic GEI areas and silhouette sequences portraying the basic shape of human and
action. Despite a single feature approach, results are strong, and subsequent fusion [13, 29]
with alternative features may permit increased robustness. In comparison to silhouette se-
quences, the GEI represents action performance as a single compact 2D image and noise
within frames is acceptable given normalisation mitigates the effects, however the discrimi-
native ability of the GEI is affected most by covariates targeting the shape.

Given 100% performance using static and dynamic actions, comparison is complex as
little work performs the same action split. Despite this, performance of static and dynamic
actions is equal to Gorelick et al. [5], while both all and static and dynamic actions out-
perform approaches such as [9, 22] where the former does not require any pre-processing
which is advantageous. Furthermore, both sets of results rank highly compared to a recent
collection of techniques [23] achieved with the Weizmann dataset. Results and trade-off
indicate actions benefit from decomposition into static and dynamic classes due to GEI gra-
dient distribution, where a Lele filter and bin and cell size of 21 and 2 respectively are best
suited. Further analysis on datasets with varying complexity is required to avoid bias and
achieve a more comprehensive evaluation of parameter behaviour. However the action class
split demonstrates the requirement of different cell and bin sizes. The action is split is par-
ticularly beneficial for reducing computational complexity during classification.

Results promote the benefit of higher dimensionality feature vectors and this approach
may benefit from dimensionality reduction. More complex datasets, such as the KTH ac-
tions dataset [28], are required to avoid bias and confirm parameter values. Action class
division requires implementation. Multi-camera datasets will permit viewpoint analysis and
an approach similar to Rudoy and Zelnik-Manor [26] may be performed. Experimentation
with HOF [8] and fusion of HOG and HOF [30] may achieve increased performance and
robustness against covariates affecting shape and performance of action, however this may
be dataset dependent. An interesting alternative to combat the affects of covariate factors,
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with the additional bonus of application in low light and night scenes, is employment of in-
frared imagery, where successful results have been achieved for both gait [31] and action
[14] recognition.
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