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Fast and reliable bundle adjustment is essential in many applications
such as mobile vision, augmented reality, and robotics. Two recent ideas
to reduce the associated computational cost are structure-less SFM (struc-
ture from motion) [1, 5, 6, 7] and incremental smoothing [3, 4]. The
former formulates the cost function in terms of multi-view constraints in-
stead of re-projection errors, thereby eliminating the 3D structure from
the optimization. The latter was developed in the SLAM (simultaneous
localization and mapping) community and allows one to perform efficient
incremental optimization, adaptively identifying the variables that need to
be recomputed at each step.

In this paper we combine these two key ideas into a computationally
efficient bundle adjustment method, and additionally introduce the use
of three-view constraints to remedy commonly encountered degenerate
camera motions.

The optimized cost function in light bundle adjustment (LBA) is de-
fined, similarly to [5, 6], as
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with X the estimated poses for all cameras, p all image observations across
all views, ¥ the measurement covariance, and where [y = a’Z~!a de-
notes the squared Mahalanobis distance. The parameter N, represents the
number of multi-view constraints h; derived from the feature correspon-
dences in the given sequence of views. Each constraint h; is a function
of several camera poses and the image observations in the corresponding
images. The applied multi-view constraints are a combination of two-
and three-view constraints [2], that, as opposed to using only two-view
constraints, allow consistent motion estimation in a straight-line camera
motion.

We formulate the optimization problem in terms of a factor graph,
and incrementally update a directed junction tree which keeps track of the
current best solution [3, 4]. The factor graph defines a factorization of the
function f (x) as
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where Xy C x is the set of all camera poses x; connected by an edge
to factor fo. Each factor fy represents a single multi-view constraint
between the appropriate views. A simple example of a factor graph using
two- and three-view constraints is shown in Figure 1a.

The optimization process corresponds to adjusting all the camera poses
X to obtain a maximum a posteriori estimate

i= argm;le(x) = argmxin(—logf(x)). (3)
Assuming a Gaussian distribution, the above formulation is equivalent to
a non-linear least-squares optimization of the cost function (1). Typically,
only a small fraction of the camera poses are recalculated in each opti-
mization step, leading to a significant computational gain. Although only
the camera poses are optimized in LBA, if desired, all or some of the ob-
served 3D points can be reconstructed after the optimization convergence.

We present a performance evaluation of incremental LBA (iLBA), i.e.
applying incremental smoothing for optimizing the cost function Jy g4, us-
ing several datasets. Figure 1b shows the optimized camera poses and the
reconstructed structure for one of the datasets. The structure reconstruc-
tion was performed based on the LBA-optimized camera poses.

Comparing iLBA to previous structure-less BA methods [1, 5, 6, 7]
and to conventional bundle adjustment reveals significantly better timing
performance and similar accuracy levels.
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Figure 1: (a) A factor graph representation for a simple example of 4
cameras observing 2 landmarks. Two-view and three-view factors are
added instead of projection factors. Landmark observations are denoted
by dashed lines. (b) Optimized camera poses and reconstructed structure
in the cubicle dataset.
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