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Abstract
Deformable 3D reconstruction from 2D images requires prior knowledge on the

scene structure. Template-free methods use generic prior knowledge such as piecewise
smoothness but require multiple images with significant baseline. Template-based meth-
ods require only one image but handle only one object for which they need specific prior
knowledge, namely a 3D template. We here propose a novel method that alleviates the
strong assumptions of both the template-free and template-based methods: our method
uses multiple templates to achieve deformable 3D reconstruction from only one image
and for multiple objects. It uses object recognition to automatically discover what ob-
jects are visible in the input image and to select the appropriate templates for deformable
3D reconstruction. The object database is built offline. Crucially, this database does not
only contain appearance descriptors as in existing object recognition frameworks, but
also material properties to facilitate deformable 3D reconstruction. We show success-
ful experimental results with objects made of various materials such as paper, cloth and
plastic.

1 Introduction
Deformable 3D reconstruction from monocular video data has been an active area of research
over the last few years [3, 6, 9, 12, 23]. Techniques for the rigid case are well advanced: it
is now possible to build city-scale 3D models from photo collections in a few hours [1, 29].
Deformable 3D reconstruction however still lags behind. Deformable 3D reconstruction
requires prior knowledge on the scene structure such as the shape space or the type of de-
formations in order to constrain the problem and resolve the ambiguities. Deformable 3D
reconstruction approaches can be classified in two groups: template-free [2, 3, 9, 12, 23, 31]
and template-based methods [6, 24, 28]. Template-free methods use generic prior knowl-
edge such as piecewise smoothness and require multiple images with significant baseline
to recover the deformable structure. Template-based methods require only one image but
currently handle only one object at a time for which they need a 3D template.

In this paper, we propose a novel approach that alleviates the strong assumptions of both
the template-free and template-based approaches: we use multiple templates from an object
database to achieve deformable 3D reconstruction from only one image and for multiple ob-
jects at a time. Our methodology combines different techniques including object recognition
by registration and template-based deformable 3D reconstruction into a single framework.
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In our framework, an object database is built offline. This database contains not only
appearance descriptors as in existing object recognition frameworks [20, 22, 25], but also
material properties such as deformation constraints to facilitate deformable 3D reconstruc-
tion. At runtime we use object recognition to automatically discover what objects are visible
in the current input image and to select the appropriate templates for deformable 3D recon-
struction. For this purpose, we perform wide-baseline image matching between the stored
templates in the database and the input image that contains the deforming surfaces. We use
an outlier rejection method [26] to obtain a set of clean-up matches between each detected
template and the objects present in the 2D input image. For those objects that have a number
of clean-up matches higher than a defined threshold, we compute an image warp [5, 11].
Each warp encodes the particular deformation of an object in the image. Finally, given the
estimated warps we perform deformable 3D reconstruction for the detected objects [6].

Our approach is the first to use an object database to aid deformable 3D reconstruction.
In terms of genericity, it lies between existing template-based and template-free methods, as
it assumes that strong priors on the world can be modeled but is not object-specific.

We show successful deformable 3D reconstruction results of multiple objects from a
single image. The objects in the database are made of different materials such as paper,
cloth and plastic. The rest of the paper is organized as follows: we describe the related
work in Section 2. Then, we introduce notation and a general system overview in Section 3.
In Section 4 we describe how to build an object database that encodes both appearance
and material properties for developable and non-developable objects. Our deformable 3D
reconstruction with multiple objects framework is introduced in Section 5 and experimental
results are reported in Section 6. Finally, conclusions and future work are presented in
Section 7.

2 Related Work
Template-free 3D deformable reconstuction methods estimate the 3D shape of a deforming
object from a series of 2D projections through a sequence of images. These methods require
features tracks with enough baseline between the images and make use of spatio-temporal
smoothness priors to constrain the problem. Early approaches follow the seminal work of
Bregler et al. [9, 12, 23, 31]. Recent work follow the so called piecewise approach, where
surface patches are reconstructed first and glued together in a second step [15, 27, 30, 33].
Interesting results were also obtained considering the trajectory space approach [3], in which
the evolving 3D structure is represented in a trajectory space by means of a linear combina-
tion of basis trajectories. Recently, [2] proposed a Bayesian Finite Element Method (FEM)
modeling of deformations integrated within an Extended Kalman Filter (EKF) framework.

Template-based deformable 3D reconstruction methods require one single image, since
they rely on a prior template where the 3D shape of the object at rest is known. These
methods have two main steps: (i) registration of the input image to the template and (ii) 3D
deformable reconstruction from reprojection and deformation constraints. Some works [10,
24, 28] proposed convex formulations considering inextensible deformation constraints max-
imizing the surface’s depth. Recently, analytical solutions for the isometric and conformal
deformation cases were proposed [6]. They showed that template-based isometric surface
reconstruction from a single view registered to a template, generally has a single solution for
both developable and non-developable surfaces.

In the last few years, there has also been an increasing interest on combining object
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recognition with Simultaneous Localization and Mapping (SLAM) approaches, adding a
semantic meaning to the generated maps [13, 14]. In addition, object recognition and aug-
mentation from a large object database are becoming standard techniques in large-scale aug-
mented reality applications such as in [25, 32]. However, these approaches are only valid for
performing detection and augmentation of rigid objects. Therefore, our approach can be of
interest towards a more complete augmentation and scene interaction whith 3D deformable
objects.

3 Notation and System Overview

In this section we describe the main notation and provide a general system overview. Figure 1
depicts a general overview of the different steps in our algorithm using figures from our
experiments.

The object database DB is composed of M different objects DB = {O1, . . . ,OM}, either
non-developable or developable1. Each object in the database Oi has a set of Ni appearance
descriptors DOi = {d1, . . .dNi} and a 3D template TOi . In addition, associated to each 3D
template, each object also has a 2D parameterization of the template denoted as POi .

Given an input image, we compute a set of feature descriptors Dq and perform object
recognition to detect the objects from the database that are present in the image. For this
purpose, we first use a hierarchical vocabulary tree [22] to determine a set of M1 object hy-
potheses (M1 ≤M). Then, we match the set of features Dq to the associated set of descriptors
in the database for each particular object hypothesis to form a set of correspondences that
may be corrupted with outliers. We use the feature-based surface detection method described
in [26] to obtain a set of clean-up matches between the target image and each template, esti-
mating an image warp WOi that models the image deformation between the target image and
of each possible template.

After feature-based surface detection we have a set of M2 objects, whose deformation
is consistent with the computed warps and the number of clean-up matches is higher than
a defined threshold. Our problem is now to solve for the deformable 3D reconstruction of
each detected object given their 2D parameterization POi and estimated warps WOi . In more
details, we are interested in obtaining for each detected object the unknown surface function
ϕOi that maps a point from the 2D parameterization POi to the 3D deforming surface Si.
At this point we can perform template-based isometric surface reconstruction, since we can
obtain a single solution considering isometric deformations for both the developable and
non-developable cases [6].

4 Building the Object Database

We now describe how to build an object database that encodes appearance information and
deformation constraints for each object. Basically, an object in our database is an entity that
comprises of a set of appearance descriptors DOi , a 3D template TOi and its 2D parameter-
ization POi . This information is obtained from a set of images IOi of the object of interest.
For developable objects only one image is necessary, whereas for non-developable objects

1The surface of developable objects has a zero Gaussian curvature and can be flattened onto a plane without
distortion such as stretching or compression.
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Figure 1: Given an input image, we first perform object recognition to detect database objects
in the input image. Then, we compute 2D image warps that model the deformation of each
particular object between the input image and a 2D parameterization of the 3D template.
Finally, using the estimated warps we perform template-based isometric surface reconstruc-
tion. The detected objects from the database are highlighted, whereas non-detected objects
are depicted in a darker color.

several images are used. Figure 2 depicts an example of the object database construction for
the two different types of surfaces non-developable and developable.

For feature detection and description, we use the Speeded Up Robust Features (SURF) [7]
for obtaining a set of keypoints with associated descriptors. We decided to use SURF since
it has a good compromise between speed and performance. However, our framework is valid
for any particular feature detector-descriptor choice.

Regarding the 3D templates of the objects and their 2D parameterizations, we distinguish
between two different cases: developable and non-developable objects. For the first case, ob-
taining a 3D template of the object TOi is trivial, since developable objects can be physically
flattened to a plane without any distortion. For these objects we use a single image from an
object of known dimensions flattened into a plane and extract SURF features to obtain the
set of descriptors DOi . The 3D reconstruction of the planar object with known dimensions
can be obtained by means of pose rectification or homography [17]. For developable objects
the 2D parameterization POi is the same as its 3D template TOi .

For non-developable objects we use multiple images of the object and perform rigid
Structure-from-Motion (SfM) to build a 3D template, matching features between different
views. We use the software Bundler [29] for the generation of a sparse 3D point cloud for the
non-developable objects. This 3D point cloud can be densified by using multi-view stereo
algorithms such as [16]. In the resulting 3D point cloud, a 3D point can be visible in several
images from the whole sequence, and therefore the point will have different descriptors with
a small variance between them. For those 3D points we compute an average descriptor vector
by averaging the descriptors from all the different views.

The next step is building a 3D triangle-mesh from the 3D point cloud. For this purpose,
well-known surface reconstruction algorithms from point clouds such as [8, 18] can be used.
The resulting 3D mesh will be used as the 3D template of the surface with the list of asso-
ciated descriptors. For non-developable objects we obtain the 2D parameterization POi by
means of conformal flattening [19]. This technique is very popular in the computer graphics
literature and widely used in many different applications such as texture mapping. Confor-
mal flattening maps a 3D mesh onto a plane while approximately preserving angles. To sum

Citation
Citation
{Bay, Ess, Tuytelaars, and Gool} 2008

Citation
Citation
{Hartley and Zisserman} 2000

Citation
Citation
{Snavely, Seitz, and Szeliski} 2008

Citation
Citation
{Furukawa, Curless, Seitz, and Szeliski} 2010

Citation
Citation
{Bernardini, Mittleman, Rushmeier, Silva, and Taubin} 1999

Citation
Citation
{Kazhdan, Bolitho, and Hoppe} 2006

Citation
Citation
{L{é}vy, Petitjea, Ray, and Maillot} 2002



ALCANTARILLA, BARTOLI: DEF. 3D RECONSTRUCTION WITH AN OBJECT DATABASE 5

Figure 2: The image shows the process from the input image(s) to the computation of the
3D template and 2D parameterization for non-developable and developable objects. The
extracted features are depicted in blue in the input images. First row: non-developable object.
Second row: developable object. Best viewed in color.

up, an object in the database Oi is composed of:

Oi =

 dOi = {d1 . . .dNi} , Appearance Descriptors
TOi = {(x1,y1,z1) . . .(xNi ,yNi ,zNi)} , Geometric 3D Template
POi = {(u1,v1) . . .(uNi ,vNi)} , Geometric 2D Parameterization

,

(1)
where the template TOi is a 3D triangle-mesh with Ni vertices. Similarly, the parameterization
POi is a 2D triangle-mesh with Ni vertices.

5 Deformable 3D Reconstruction with Multiple Objects
In this section we describe the main steps of our deformable 3D reconstruction with multiple
objects approach. Basically, there are three main steps: object recognition, feature-based
deformable surface detection and deformable 3D reconstruction.

5.1 Object Recognition
We use a hierarchical vocabulary tree [22] to determine a set of M1 object hypotheses that
can be present in the input image. The vocabulary tree is constructed with the set of de-
scriptors from each object in the database and is built offline. Given a target image, we first
extract SURF features and quantize the extracted descriptors Dq according to the hierarchi-
cal vocabulary tree. Then, we use a Term Frequency-Inverse Document Frequency (TF-IDF)
score to find a similarity measure between each of the objects in the database and the visual
words from the input image. We choose the set of M1 best scores as the possible objects
present in the image.

Thanks to the use of a hierarchical vocabulary tree we can perform image queries in
constant operation time even when considering very large object databases. At the end of the
vocabulary tree step, we have a set of M1 potential objects present in the image that need to
be validated with the image deformation model.
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Figure 3: Results of the outlier rejection method for image matching in deformable sur-
faces. The set of matches is computed between the target image and the 2D parameterization
of the 3D template. First row: a piece of cloth (developable object). The algorithm re-
turns 248 clean-up matches from a set of 412 correspondences. Second row: a cushion
(non-developable object). The algorithm returns 198 clean-up matches from a set of 386
correspondences.

5.2 Feature-Based Deformable Surface Detection

For performing deformable 3D reconstruction, we need to check also for geometric con-
sistency of the potential detected objects with the deforming surfaces in the image. Given
the set of M1 potential objects, we use the feature-based approach described in [26] for de-
tecting deformable surfaces in the input image. This algorithm performs wide-baseline fea-
ture matching between a template image POi and an input image Iq estimating a parametric
warp that represents the image deformation model. The algorithm returns a set of clean-up
matches rejecting outliers between the template and the input image. Figure 3 depicts two
examples of the outlier rejection results for two different objects in our database, one piece
of cloth and one cushion.

For each of the M1 potential objects, we match the set of descriptors from each object DOi

with respect to the set of descriptors from the target image Dq. Image matching is performed
in a fast way by checking for the Approximated Nearest Neighbors (ANNs) [21] of the
template image. The set of correspondences between the query image and descriptors from
potential objects may contain outliers. Therefore, we need to find the set of inliers between
each template and the query image. In addition, we search for the warp function WO j that
maps a point from the 2D template PO j to a point in the target image I. We use a parametric
warp based on Radial Basis Functions (RBF), concretely the Thin Plate Spline (TPS), that
minimizes the integral bending energy. For more details about the TPS warp, see [4, 5].

The outliers are removed from the set of correspondences by assuming that the surface is
locally smooth and its local topology must be preserved. From the set of clean-up matches,
the final warp WO j is obtained.

5.3 Deformable 3D Reconstruction

In order to constrain the 3D reconstruction problem, we assume that the surfaces deform
isometrically. This is a reasonable assumption that has been made in most of the works from
the literature [24, 28]. These works also assume the surfaces to be developable, however in
our formulation we can also deal with non-developable surfaces.
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Figure 4: Geometric modeling of monocular multiple-template based reconstruction. For
clarity reasons the figure just show the formulation for two objects.

Template-based isometric surface reconstruction from a single view registered to a tem-
plate generally has a single solution as shown in [6]. Their approach is based on a sys-
tem of partial differential equations (PDEs) that take into account reprojection and surface
deformation constraints. In this paper, we extend that framework to allow the reconstruc-
tion of multiple templates. Figure 4 depicts the geometric modeling of monocular multiple
template-based reconstruction, assuming that the surfaces have disk topology and that the
object templates have been correctly detected. The geometric modeling depicted in Figure 4
takes into account reprojection and deformation constraints for each detected object. The
projection operator Π maps a 3D point Qi = (X Y Z)t from a 3D deformed surface Si to a
2D point in the image plane qi = Π(Qi), with qi = (u,v)t . Assuming a pin-hole camera
model, the projection operator Π contains the known camera intrinsics parameters in matrix
K. If the intrinsics effects are undone in the image (by multiplying by K−1, the projection
operator is simply Π(Qi) =

1
Z (X Y )t . Deformation constraints are encoded in the warps WOi

that map a 2D point from an object’s parameterization pi to a 2D point in the target image
qi, i.e. qi =WOi (pi).

Considering isometric deformations, we can obtain an analytical solution for the un-
known surface functions ϕOi , that maps a 2D point pi from the 2D parameterization POi to
a 3D point Qi = ϕOi (pi) in the deformed surface Si. The analytical solution is obtained by
solving a system of PDEs, yielding a solution that depends only on the warp WOi and the set
of first and second order warp derivatives. Every solution of the system of PDEs is of the
form:

ϕOi = f A−
1
2

(
WOi

1

)
, (2)

where f and A are functions that depend on the warp WOi and the set of first and second order
warp derivatives. It is important to notice here, that even though the geometric modeling
takes into account the camera intrinsics parameters, the camera used for building the database
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Figure 5: Reconstruction results for a single object in the image. First row: Graffiti exper-
iment. Second row: T-Shirt experiment. Left Image: Reconstructed mesh projected in the
2D image. Middle: Reconstructed mesh in 3D. Right: Sets of clean-up matches between the
target image and the object template.

can be different from the one used for the deformable reconstruction.

6 Experimental Results

The database used in our experiments comprises of 8 different objects from different mate-
rials and deformation properties. We used typical objects made of paper, cloth and plastic.
In particular, we have 6 developable objects and 2 non-developable objects. The images for
building the database have a resolution of 2048× 1536 pixels and were obtained by using
a standard consumer digital camera. Regarding the images for the deformable 3D recon-
struction, we used two different digital cameras and up to three different image resolutions
2048×1536, 1280×720 and 640×480 pixels.

Figure 5 depicts the deformable reconstruction results considering a single object in the
image for two different objects. For the first example, we used a low image resolution of
640×480 pixels and for the second experiment we used an image resolution of 1280×720
pixels. The algorithm is able to return 130 clean-up matches from a set of 167 correspon-
dences, capturing the deformation of the surface accurately for the first experiment. On the
second experiment the algorithm returns 147 clean-up matches from a set of 255 correspon-
dences.

Figure 6 depicts reconstruction results for experiments considering two objects in the
image. We show three different experiments considering an image resolution of 1280×720
pixels. As can be observed, our algorithm is able to detect multiple objects in the image
an obtain a good reconstruction even in the presence of significant deformations. We also
performed the reconstruction of three different objects simultaneously. Figure 7 depicts one
example in which three different deforming objects are reconstructed from a single image
with an image resolution of 2048×1536 pixels.

We did not observe any false positive regarding object detection during our experiments.
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Figure 6: Reconstruction results for two objects in the image. First row: Reconstructed
meshes projected in 2D. Second row: Reconstructed meshes in 3D.

Figure 7: Reconstruction results for three objects in the image. Left: Reconstructed meshes
projected in 2D. Middle and right: two different views of the reconstructed meshes in 3D.

This is because, once a set of object hypotheses has been computed from the hierarchical
vocabulary tree, we check each of the hypotheses for geometric consistency with the de-
forming surfaces in the image. However, it is possible that sometimes the object can be
detected properly by the vocabulary tree but the small number of correspondences is too few
to obtain an accurate deformable 3D reconstruction. This may happen when many objects
are present in the image or the objects are far from the camera.

We implemented the whole system in C++ and obtained a processing time of approxi-
mately 2 seconds per frame when dealing with two objects in the image using a Core 2 Duo
2.4GHz laptop computer and images of 1280×720 pixels resolution. However, we expect to
have real-time performance in the near future, by using multiple cores and GPGPU process-
ing for speeding-up the computation of some steps of our algorithm. For example, by using
faster feature detection and description methods, the computation time can be reduced con-
siderably, since feature detection is one of the most time consuming steps in our framework
(approximately 1 second per frame).
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7 Conclusions and Future Work

In this paper we have presented the first deformable 3D reconstruction approach using an ob-
ject database. Our method uses multiple templates to achieve deformable 3D reconstruction
from only one image and for multiple objects. It uses object recognition to automatically
discover which objects are visible in the input image and to select the appropriate templates
for deformable 3D reconstruction. Our work opens a whole new area of approaches that can
benefit from using strong priors encoded in a versatile object database.

Possible extensions of our work include the study of other possible deformations such
as conformal or quadratic local models. In addition, the object database framework allows
one to incorporate more information as for example material properties of each particular
object such as stiffness, texture or local deformation models. Another possible extension of
our work is to use specific feature detectors (e.g. face detector) to deal with other classes of
objects and deformations.
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