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This paper draws a new connection between two existing algorithms for
estimation of correspondence fields between images: Belief Propaga-
tion [4] and PatchMatch [1]. Correspondence fields arise in problems
such as dense stereo reconstruction, optical flow estimation, and a variety
of computational photography applications such as recoloring, deblurring,
high dynamic range imaging, and inpainting. By analysing the connection
between the methods, we obtain a new algorithm which has performance
superior to both its antecedents, and in the case of stereo matching, repre-
sents the current state of the art on the Middlebury benchmark at sub-pixel
accuracy. The first contribution of our work is a detailed description of
PatchMatch and belief propagation in terms that allow the connection be-
tween the two to be clearly described. Our second contribution is in the
use of this analysis to define a new algorithm: PatchMatch Belief Prop-
agation (PMBP) which, despite its relative simplicity, is more accurate
than PatchMatch and orders of magnitude faster than PBP.

Belief propagation (BP) is a venerable approach to the analysis of
correspondence problems. The correspondence field is parametrized by a
vector grid {us}n

s=1, where s indexes nodes, typically corresponding to im-
age pixels, and us ∈Rd parametrizes the correspondence vector at node s.
We shall consider a special case of BP, viewed as an energy minimization
algorithm where the energy combines unary and pairwise terms

E(u1, . . . ,un) =
n∑

s=1

ψs(us) +

n∑
s=1

[ ∑
t∈N(s)

ψst (us,ut )
]
, (1)

with N(s) being the set of pairwise neighbours of node s. The unary en-
ergy ψs(us), also called the data term, computes the local evidence for
the correspondence us. On a continuous space, a natural representation
using particles presents itself, closely related to Max Product Particle BP
(PBP)[3]. With each node s, we associate a set of K particles Ps ⊂ Rd ,
where each particle p ∈ Ps is a candidate solution for the minimizing cor-
respondence parameters u∗s . BP is a message-passing algorithm, where
messages are defined as functions from nodes to their neighbours. Be-
fore defining the messages, which are themselves defined recursively, it is
useful to define the log disbelief at node s as

Bs(us) := ψs(us) +

∑
t∈N(s)

Mt→s(us), (2)

in terms of which the messages, using particles, are defined as

Mt→s(us) := min
ut∈Pt

ψst (us,ut ) + Bt (ut ) − Ms→t (ut ). (3)

We note that this definition is in terms of a continuous us, not restricted
to the current particle set Ps, but the minimization over ut is a discrete
minimization over the particles Pt . At convergence, ûs := argminu Bs(u)
is the estimate of the minimizer.

The PatchMatch algorithm (PM) [1] was initially introduced as a
computationally efficient way to compute a nearest neighbour field (NNF)
between two images. In terms of energy minimization, the NNF is the
global minimizer of an energy comprising unary terms only (ψst = 0). PM
computes good minima while being very efficient. With such a powerful
optimizer, more complex unary terms can be defined, yielding another
class of state-of-the-art correspondence finders, exemplified by the recent
introduction of PatchMatch Stereo [2]. Using the same particle notations
as BP, the set Ps are initialized uniformly at random. One PM iteration
then comprises a linear sweep through all nodes in an order defined by
a schedule function φ(s), so that s is visited before s′ if φ(s) < φ(s′). At
node s, two update steps are performed: propagation and resampling:

• In the propagation step, the particle set is updated to contain the
best K particles from the union of the current set and the set Cs
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Figure 1: Evolution of the disparity map (before post-processing) with differ-
ent weightings of the smoothness: (a) β = 0 (PatchMatch stereo). (b) β = 5. (c)
β = 17.5. (d) Corresponding disparity error, for both raw and post-processed
outputs.

of already-visited neighbour candidates, where “best” is defined as
minimizing the unary cost ψs(·).

• The local resampling step (called “random search” in [1]) perturbs
the particles locally according to a proposal distribution which we
model as a GaussianN (0,σ). The second step of the PM iteration
updates PS with any improved estimates from the local resampling
set, for m resampling steps.

After several alternating sweeps, the best particle in each set typically
represents a good optimum of the unary-only energy.

PatchMatch Belief Propagation (PMBP) can be defined as a com-
bination of the PM and PBP algorithms. We shall consider PBP our base,
as the goal is to minimize a more realistic energy than PM, that is to say,
an energy with pairwise terms encouraging piecewise smoothness.

First, PM resamples Ps from the neighbours of node s, while PBP’s
resampling is only via MCMC from the elements of Ps. The samples
are evaluated using Bs, so this is a resampling of the particle set under
the current belief, as proposed in PBP, but with a quite different source
of particle proposals. Thus PMBP augments PBP with samples from the
neighbours.

Second, PBP uses an MCMC framework where particles are replaced
in Ps with probability given by the Metropolis acceptance ratio, while PM
accepts only particles with higher belief than those already in Ps. This
non-Metropolis replacement strategy further accelerates convergence, so
it is included in PMBP.

Making these two modifications yields a powerful new optimization
algorithm for energies with pairwise smoothness terms. In the case of a
zero pairwise term ψst = 0, PMBP exactly yields PM. Conversely, running
PMBP with a nonzero pairwise term is a strict generalization of PM, al-
lowing the incorporation of an explicit smoothness control which directly
addresses the deficiencies of PM while retaining its speed.

We apply our algorithm to the stereo matching case. The effect of
adding a realistic pairwise term to the PatchMatch stereo algorithm under
our PMBP framework can be seen in figure 1.
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