Let the Shape Speak - Discriminative Face Alignment using Conjugate Priors
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This work presents a novel Bayesian formulation for aligning faces in un-
seen images. Our approach is closely related to Constrained Local Models
(CLM) [2] and Active Shape Models (ASM) [6], where an ensemble of
local feature detectors are constrained to lie within the subspace spanned
by a Point Distribution Model (PDM).

Fitting a model to an image typically involves two steps: a local
search using a detector, obtaining response maps for each landmark (like-
lihood term) and a global optimization that finds the PDM parameters that
jointly maximize all the detections. The global optimization can be seen
as a Bayesian inference problem, where the posterior distribution of the
PDM parameters (and pose) can be inferred in a maximum a posteriori
(MAP) sense. We present a novel Bayesian global optimization strategy,
where the prior is used to encode the dynamic transitions of the PDM
parameters. Using recursive Bayesian estimation we model the prior dis-
tribution of the data as being Gaussian. The mean and covariance were
assumed to be unknown and treated as random variables.

The Shape Model: The shape of a PDM is represented by the 2D
locations of a mesh s = (x1,y1,...,%y, yv)T (v landmarks). Applying PCA
on training examples, results in the parametric model s = sy +®b + Vq,
where s is the mean shape, P is the shape subspace matrix (n eigenvec-
tors), b is a vector of shape parameters, q the pose parameters vector and
Y holds four special eigenvectors that linearly model the 2D pose [4].

Goal: Given a 2v vector of observed positions y, the goal is to find
the optimal set of parameters b that maximizes the posterior probability
of being aligned. Using an Bayesian approach, the shape parameters are
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where y; is the i landmark coordinates and by_ is the previous optimal

estimate of b. The prior encodes how the shape/pose parameters change.
The Likelihood Term: is the following convex energy function:
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where Ay is the difference between the observed and the mean shape and
Yy is the uncertainty of the spatial localization of the landmarks (2v x 2v

block diagonal covariance matrix).

The response maps can be nonparametrically approximated by us-
ing a Kernel Density Estimator (KDE) [5]. Maximizing over the KDE
is typically performed by the mean-shift algorithm. Let z; = (x;,y;) be a

candidate to the i’ landmark, being y{ the current landmark estimate, Qye
a L x L patch centered at y{, I the target image and p;(z;) the probablhty
z; is aligned. The i*" mean-shift landmark update and its uncertainty are
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with I a 2D identity matrix and G,%/_ the decreasing bandwidth.

The Prior Term: p(by|b;_1) o< N (by|p,Xy) follows a Gaussian
distribution. Mean L}, and covariance X, of the data are assumed to be
unknown and modeled as random variables [1]. Recursive Bayesian es-
timation can be applied to infer the parameters of the prior distribution.
Defining b as an observable vector, the joint posterior can be written as

P(Hp, Zp|b) o< p(b|tp, X ) p (b, In)- (5)

(a) Local search regions.

(b) Detectors [3] (c)Responses p;(z;)

Figure 1: The Bayesian global optimization strategy jointly combines all
detectors scores (MAP sense), explicitly modelling the prior distribution.

The joint prior p(p,Xp) follows a normal-inverse Wishart distribution,

assuming p(Up|Xp) a Gaussian (the conjugate prior for a Gaussian with

known mean is an inverse Wishart). The joint posterior density p(Up, Xy |b)
follows an normal-inverse Wishart distribution with hyperparameters [1]:

Vy = Vg_1+m, Ki=K_1+m (6)
Kk—1 m =
6 = O+ 7
k P R ——— (@)
A= Ao+ b )b 6 ) ®)
Ky—1 +m

where 6_ is the prior mean, k| is the number of prior measurements,
b the mean of the new samples, m number of samples, V;_; and A;_ are
the degrees of freedom and scale matrix for the inv-Wishart distribution.
Marginalizing p(up,Xp|b) with respect to Xy, gives the marginal pos-
terior distribution for the mean p(uy,|b), that follows a multivariate Student-
t distribution. Using the expectation of p(uy|b) as the update at instance
k we get up, = E(up|b) = 6. Similarly, marginalizing p(uy,p|b) with
respect to Ly, gives p(Zy|b) that follows an inverse Wishart distribution.
By the expectation of p(Zp|b) we get Zp, = E(Zp[b) = (v —n—1) 1A
Global Alignment (MAP): The recursive posterior distribution is
Gaussian, and takes the form of p(bg|yg,-..,¥o) o< N (by| 1y, Zx) with
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where Ay(,,), Xy, are the multiple likelihood observations.
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