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This work presents a novel Bayesian formulation for aligning faces in un-
seen images. Our approach is closely related to Constrained Local Models
(CLM) [2] and Active Shape Models (ASM) [6], where an ensemble of
local feature detectors are constrained to lie within the subspace spanned
by a Point Distribution Model (PDM).

Fitting a model to an image typically involves two steps: a local
search using a detector, obtaining response maps for each landmark (like-
lihood term) and a global optimization that finds the PDM parameters that
jointly maximize all the detections. The global optimization can be seen
as a Bayesian inference problem, where the posterior distribution of the
PDM parameters (and pose) can be inferred in a maximum a posteriori
(MAP) sense. We present a novel Bayesian global optimization strategy,
where the prior is used to encode the dynamic transitions of the PDM
parameters. Using recursive Bayesian estimation we model the prior dis-
tribution of the data as being Gaussian. The mean and covariance were
assumed to be unknown and treated as random variables.

The Shape Model: The shape of a PDM is represented by the 2D
locations of a mesh s = (x1,y1, . . . ,xv,yv)T (v landmarks). Applying PCA
on training examples, results in the parametric model s = s0 + Φb + Ψq,
where s0 is the mean shape, Φ is the shape subspace matrix (n eigenvec-
tors), b is a vector of shape parameters, q the pose parameters vector and
Ψ holds four special eigenvectors that linearly model the 2D pose [4].

Goal: Given a 2v vector of observed positions y, the goal is to find
the optimal set of parameters b that maximizes the posterior probability
of being aligned. Using an Bayesian approach, the shape parameters are

p(b|y) ∝

(
v

∏
i=1

p(yi|b)

)
p(b|bk−1) (1)

where yi is the ith landmark coordinates and bk−1 is the previous optimal
estimate of b. The prior encodes how the shape/pose parameters change.

The Likelihood Term: is the following convex energy function:

p(y|bk) ∝ exp

−1
2
(y− (s0︸ ︷︷ ︸

∆y

+Φb))T
Σ
−1
y (y− (s0 +Φb))

 (2)

where ∆y is the difference between the observed and the mean shape and
Σy is the uncertainty of the spatial localization of the landmarks (2v×2v
block diagonal covariance matrix).

The response maps can be nonparametrically approximated by us-
ing a Kernel Density Estimator (KDE) [5]. Maximizing over the KDE
is typically performed by the mean-shift algorithm. Let zi = (xi,yi) be a
candidate to the ith landmark, being yc

i the current landmark estimate, Ωyc
i

a L×L patch centered at yc
i , I the target image and pi(zi) the probability

zi is aligned. The ith mean-shift landmark update and its uncertainty are

yKDE(τ+1)
i ←

∑zi∈Ωyc
i

zi pi(zi)N (yKDE(τ)
i |zi,σ

2
h j

I2)

∑zi∈Ωyc
i

pi(zi)N (yKDE(τ)
i |zi,σ2

h j
I2)

, (3)

Σ
KDE
yi

=
1

d−1 ∑
zi∈Ωyc

i

pi(zi)(zi−yKDE
i )(zi−yKDE

i )T , d = ∑
zi∈Ωyc

i

pi(zi), (4)

with I2 a 2D identity matrix and σ2
h j

the decreasing bandwidth.
The Prior Term: p(bk|bk−1) ∝ N (bk|µb,Σb) follows a Gaussian

distribution. Mean µb and covariance Σb of the data are assumed to be
unknown and modeled as random variables [1]. Recursive Bayesian es-
timation can be applied to infer the parameters of the prior distribution.
Defining b as an observable vector, the joint posterior can be written as

p(µb,Σb|b) ∝ p(b|µb,Σb)p(µb,Σb). (5)

(a) Local search regions.
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(b) Detectors [3]
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(c) Responses pi(zi)

Figure 1: The Bayesian global optimization strategy jointly combines all
detectors scores (MAP sense), explicitly modelling the prior distribution.

The joint prior p(µb,Σb) follows a normal-inverse Wishart distribution,
assuming p(µb|Σb) a Gaussian (the conjugate prior for a Gaussian with
known mean is an inverse Wishart). The joint posterior density p(µb,Σb|b)
follows an normal-inverse Wishart distribution with hyperparameters [1]:

υk = υk−1 +m, κk = κk−1 +m (6)

θk =
κk−1

κk−1 +m
θk−1 +

m
κk−1 +m

b (7)

Λk = Λk−1 +
κk−1m

κk−1 +m
(b−θk−1)(b−θk−1)T (8)

where θk−1 is the prior mean, κk−1 is the number of prior measurements,
b the mean of the new samples, m number of samples, υk−1 and Λk−1 are
the degrees of freedom and scale matrix for the inv-Wishart distribution.

Marginalizing p(µb,Σb|b) with respect to Σb gives the marginal pos-
terior distribution for the mean p(µb|b), that follows a multivariate Student-
t distribution. Using the expectation of p(µb|b) as the update at instance
k we get µbk = E(µb|b) = θk. Similarly, marginalizing p(µb,Σb|b) with
respect to µb gives p(Σb|b) that follows an inverse Wishart distribution.
By the expectation of p(Σb|b) we get Σbk = E(Σb|b) = (υk−n−1)−1Λk.

Global Alignment (MAP): The recursive posterior distribution is
Gaussian, and takes the form of p(bk|yk, . . . ,y0) ∝N (bk|µk,Σk) with

Σk =

(
(Σbk +Σk−1)−1 +Φ

T
M

∑
m=1

(
Σ
−1
y(m)

)
Φ

)−1

(9)

µk = Σk

(
Φ

T
M

∑
m=1

(
Σ
−1
y(m)

∆y(m)

)
+(Σbk +Σk−1)−1

µbk

)
(10)

where ∆y(m), Σy(m) are the multiple likelihood observations.
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