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Abstract

In this work, we focus on developing features and approaches to represent and an-
alyze videography styles in unconstrained videos. By unconstrained videos, we mean
typical consumer videos with significant content complexity and diverse editing artifacts,
mostly with long duration. Our approach constructs a videography dictionary, which is
used to represent each video clip as a series of varying videography words. In addition
to conventional features such as camera motion and foreground object motion, two novel
features including motion correlation and scale information are introduced to charac-
terize videography. Then, we show that unique videography signatures from different
events can be automatically identified, using statistical analysis methods. For practical
applications, we explore the use of videography analysis for content-based video retrieval
and video summarization. We compare our approaches with other methods on a large un-
constrained video dataset, and demonstrate that our approach benefits video analysis.

1 Introduction
Automatic understanding of visual content in unconstrained Internet video, such as those
found on consumer video sharing sites (e.g., YouTube and Metacafe), offers an interesting
but very challenging task. These videos are particularly challenging because they contain
very diverse content; they are captured under a variety of camera motion conditions (panning,
zooming, translating); they are of highly variable length (from minutes to hours); and they
are often heavily edited (e.g., shot stitching and adding captions). As such, unconstrained
videos are qualitatively very different and even more challenging than widely-used video
datasets, such as the Hollywood dataset [5] or the YouTube Sports dataset [7], in which video
clips contain fairly coherent single action occurring within a short duration. For example,
some wedding videos from video sharing websites are more than an hour long and they are
produced by stitching shots recorded separately across the entire wedding event. Each shot
contains fairly different content, such as a panning camera capturing a party room filled
with dancing guests, a series of stitched shots of each guest individually congratulating the
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Figure 1: Framework for videography analysis and applications for unconstrained videos.
See text for details.

wedding, or a shot that zooms in on the bride and groom. On the other hand, other wedding
videos may be only minutes long, and only contain shots of the key events of the ceremony.

In this work, we present an approach for unsupervised videography analysis for this type
of unconstrained video. Intuitively, each videography can be understood as a camera direc-
tor’s direction on a movie script, e.g., “capture the running actress by panning the camera,
to have her face appear at 20 percent size of the video”. The idea is that different classes
of video content will have different videography styles—the videography style of a wedding
video should be different from a sports video—and so, the videography style should provide
a valuable signal for automated content analysis. In this paper, we demonstrate the value of
videography analysis for video retrieval by event class and for video summarization.

In our approach, we assume that there are diverse videography styles in unconstrained
videos, which are discovered as a videography dictionary via unsupervised clustering on
proposed features. Then, a video clip can be represented as a series of segments with vary-
ing videography words. For the underlying videography features, we extend conventional
features such as camera motion and foreground (FG) object motion [3, 11, 15, 19, 25] by in-
corporating two novel features: motion correlation and scale information (see Sec. 3). To the
best of our knowledge, our work is the first to address the explicit learning of a videography
dictionary based on such a rich set of features beyond simple camera motions.

The overview of our proposed approaches is illustrated in Fig. 1. We first (a) extract
the videography features by decomposing the video into segments based on camera motion-
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derived “shot boundaries”, separating foreground/background motion within each segment,
and computing a series of features (as illustrated in Step 2 and described in Sec. 3). Then we
(b) cluster these features to develop a videography dictionary, and (c) quantize the segments
into videography style words and learn the relationship between the style words and events.
This is used for (d) video retrieval, and (e) to help content-adaptive video summarization.

For retrieval, we compare our approach with alternative methods on a large TRECVID
multimedia event detection (MED) ’11 video dataset [1] across 15 different diverse query
collections, and show that the videography style does indeed add complementary information
(Sec. 5). In addition, our adaptive summarization approach is different from the existing
body of work relying on fixed rules (e.g., [25]) in that our system optimizes summarization
process to highlight the unique content of the given test videos (Sec. 6).

2 Related Work
The idea of representing videos as a series of segments based on motion and/or appearance
characteristics has been explored to some extent, either as part of integrated systems [19, 22,
25] or on its own [11, 19]. Most systems, including this work, incorporate two main low-
level processing steps: (a) shot boundary detection [6, 18, 23], which is to find the boundaries
between stitched shots, and (b) camera motion estimation within shots [2, 11, 14, 19, 24, 25]
to further decompose shots into finer sub-shot units based on evolving camera motion types.

It is worth noting that we incorporate existing state-of-the-art methods as part of our
feature extraction module, and focus on (a) developing novel techniques to enable high-
level videography analysis and (b) its application for retrieval and summarization based on
noisy videography quantization as intermediate representations. Shot boundary detection
is believed to be largely solved [18]; we adopt [23]. For background (BG) camera motion
estimation, we extend [14, 24] to estimate three P/T/Z camera motion parameters from KLT
tracks while simultaneously separating the tracks into FG/BG groups. We found that other
approaches for FG/BG separation such as [3, 13] are unsatisfactory for unconstrained videos,
possibly due to the complex geometric scene structure in our data.

In terms of videography modeling, the methods closest to our work are [22, 25]. In
[25], a system capable of both summarization and retrieval was presented. The system is
mostly based on hand-tuned distance metrics and rules to classify shots and videos into
semantic categories, based on multiple features with heavy emphasis on appearance (e.g.,
color and texture), and a few others such as simple camera motion primitives (S/P/T/Z). In
our retrieval experiments (Sec. 5), we compare our new features with these simpler 4 types
of camera motion primitives. It is worth noting that our work presents results primarily
based on motion information without relying on appearance matching, hence, provides a
clearer understanding on the promise of motion-based videography modeling alone for high-
level tasks. Additionally, since our approach is learning-based, the heavy burden to tune
system parameters is alleviated. In [22], the authors present seven self-defined videography
styles common in commercial movies, which are classified per shot based on features such
as motion, appearance, and FG/BG separation; the videography quantization is based on
supervised learning, and its use for summarization or retrieval is not studied. In contrast,
our approach is unsupervised and does not require manually labeled training data for sub-
shot classification, and hence can scale up for unconstrained videos with more complex
videography styles beyond commercial movies.

For video retrieval based on videography, other than the above-mentioned related work
in [25], [15] used simple average profiles of FG/BG motion magnitude as features. In [19],
the correlation between different categories of sports videos and camera motion types (e.g.,
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Figure 2: Videography feature extraction. (Left top) Camera motion estimation with FG/BG
separation. (Left middle and bottom) Original FG motion (green) is corrected (yellow).
(Right) Distribution of extracted videography features, and a clustering-based quantization.

S/P/T/Z) and their transitions were studied, but without a notion for retrieval.
Video summarization that has been well studied in multimedia community [9] is for-

mulated as key frame extraction problem where change detection is commonly used based
on appearance features such as color [22]. Different approaches which incorporate overall
camera motion include [2, 25]. However, both works adopted fixed rules for all videos.

3 Videography Features
For every input video, our approach applies two main processing steps to extract videography
features, as illustrated in Fig. 1(a). First, a two-level motion analysis is conducted to decom-
pose long clips into sequences of segments with coherent motion types (S/P/T/Z). Second,
multiple features related to motion and scale patterns are measured from every segment,
which are used to characterize videography. For both steps, we utilize densely computed
KLT tracks [17] over the entire clips as main basis for the derived features.

For the two-level decomposition, we adopt existing state-of-the-art methods, as men-
tioned in Sec. 2. In the first phase, we use a shot boundary detection (SBD) algorithm which
relies on the birth and death ratio of KLT tracks [23]. In detail, we developed two SBD mod-
ules, each one for two different styles of boundaries, namely: Cut (simple abrupt transition)
and Fade-Out-In (common gradual transition), which account for majority of boundaries in
videos. On labeled test data of 153 shot boundaries, the precision and recall are 0.95 and
0.98 for Cut, and 0.63 and 0.75 for Fade-Out-In, which are fairly good results.

Then, the second phase decomposes each shot further into sub-segments based on four
camera motion types (S/P/T/Z). For unconstrained videos, camera motion estimation is chal-
lenging due to the complex interplay between the (apparent) motion of background (BG)
and foreground (FG) objects, which need to be separated to yield accurate results. We adopt
[14, 24] because of its proven performance on unconstrained videos and its advantage of
solving FG/BG separation simultaneously. As a result, KLT tracks are grouped into BG or
FG, where BG group accounts for tracks mostly induced by camera motion and FG group as
outliers from BG. Furthermore, to capture motion characteristics of FG objects accurately,
FG tracks are motion-corrected by subtracting average BG motion. These are illustrated in
Fig. 2(Left). Although FG/BG separation results are not perfect, the portion of mis-classified
tracks is usually small, hence, unlikely to undermine the overall videography analysis.
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Once segments are obtained, a set of videography features are extracted from every seg-
ment. In this work, we focus on visual features related to motion and scale: (1) camera
motion type (S/P/T/Z), (2) FG and (3) BG motion, (4) correlations between FG/BG motion,
and (5) the scale of foreground. For FG and BG motion, the average motion within a seg-
ment is normalized w.r.t. the video width, to cope with video clips with varying sizes. Our
novel FG/BG correlation feature is motivated by the fact that similar camera motion may be
invoked by different intentions, e.g., tracking or simply switch of focus. The magnitudes of
FG/BG correlation are measured by the normalized sum of inner product between FG tracks
and average BG motion. We also include scales of FG objects as another distinctive feature
for videography. For example, clips with close-up shots of faces are very different from clips
which contain far-away shots of pedestrians. Because the estimation of scale is a very chal-
lenging problem, in this work, we used the bounding box sizes of face detections produced
by off-the-shelf systems (e.g., [21]) as a proxy for scale estimates. In detail, average face
size within a segment (normalized by the video height) is used to represent the scale. For
example, face scale of 0.2 indicates that the average size of faces occupies about 20 percent
of the image height. It is worth noting that, there are alternative approaches for scale es-
timation by solving depth [16] or 3D geometry [20]. However, applying such methods for
unconstrained videos is beyond the scope of this work, and is left for future work.

For our experiments, we extracted the above-mentioned videography features from a
training video dataset, which consists of roughly 2000 unconstrained videos (~80 hours to-
tal), where 29 segments are found per clip on average. The overall distribution of the ex-
tracted features are shown in Fig. 2(Right), where the multi-modal characteristics in most
videography features (except FG motion) can be observed. Such patterns indicate that there
are indeed regularized videography patterns in videos.

4 Videography Dictionary and Analysis
Once videography features are obtained from segments, they are grouped to form videogra-
phy dictionary (VD) shown in Fig. 1(b). The computed VD will be used to quantize video
clips into sequences of videography words (VWs), as shown in Fig. 1(c).

We have explored two different methods for developing the dictionary: (1) concatenated
and (2) joint learning. In the first concatenated learning, each feature dimension is quan-
tized individually, then, are concatenated to form VD in a combinatoric manner. Straight-
forwardly, the first feature dimension of camera motion type has four quantization values
of S/P/T/Z. We quantize the remaining features individually, based on an empirical analy-
sis of the data on the training set. As illustrated in Fig. 2(right), the BG and FG motion
is each quantized into small/medium/large; the FG/BG correlation into correlation or no-
correlation; and the scale into no-face/small/medium/large. The video words are then formed
by concatenating these values. This creates 4×3×3×2×4 = 288 possible video words.

Our analysis of the distribution of the resulting VD shows that, interestingly, only ~40%
of the words are actually observed in the data, indicating that only a subset of combinations
of feature quantizations are present, e.g., a combination such as zoom-in, large FG and BG
motion, no correlation, and large scale actually does not appear. Furthermore, if we eliminate
rare words which have fewer than ten occurrences, we are left with only 82 unique videogra-
phy words, over a dataset of 80 hours of unconstrained video. Such observation provides an
insight that there are fairly regularized patterns in how people capture videos, regardless of
content. To the best of our knowledge, this is the first study that provides automated analysis
on characteristics of videography styles on unconstrained Internet videos.
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Figure 3: (a) Videography word examples. (b) Mutual information between different event
classes and most frequent 50 VWs. (c) Qualitative analysis on 4 event classes.

In the second method of joint learning for developing the dictionary, we again quantize
the motion type into the same four values (S/P/T/Z). However, for each motion type, we per-
form K-means clustering on the remaining four-dimension continuous vector space formed
by concatenating the four raw feature types (FG motion, BG motion, amount of correlation,
size of face). In our experiments, we chose K=30, which yields 4×30 = 120 video words.
We used a smaller number of clusters because of the observation that many of the video
words from the first method were actually not used.

Once VDs are obtained, we can examine their accuracy as a macro feature type by ex-
amining the sample video segments in each word cluster. Example segments belonging to
two sample videography word clusters are shown in Fig. 3(a), along with the detected visual
features overlayed on images to show more details, including camera motion (left bottom
arrows), compensated FG motion (green tracks), and face detections (orange boxes)1. The
textual descriptions of both words were produced manually, by looking at both the feature
vector values and the grouped segments. It can be observed that segments with highly re-
lated content are successfully grouped into the same VWs. In particular, it is worth noting
that in the second example, similar segments are grouped together correctly, even though
faces are not detected due to the challenging imaging conditions. We have manually exam-
ined 10 VWs by drawing 30 segment samples each and concluded that, on average, 88% of
segments from the same VWs show perceptually identical videography.

We also conducted analysis on the correlations between VWs and particular visual con-
tent, so called events. By events, we mean semantic content classes captured in videos, such
as Flash mob or Birthday party (defined further in [1]). This notion of analyzing or learning
about videography of videos containing the same events is illustrated in Fig. 3(b,c). Specifi-
cally, we measured the mutual information (MI) between each word and each event. A high
MI score indicates that a word is discriminative for the corresponding event. Our results are
summarized in Fig. 3(b) where MI between every event and top 50 most frequent VWs are
shown. It can be observed that, for a particular event, there are certain signature VWs. More

1In this work, faces are intentionally occluded in this figure for privacy.
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detailed analysis is shown for four event types and top 20 words, in Fig. 3(c). In particu-
lar, this analysis provides insight on how different events are captured with different styles.
For example, it shows that event Board trick has a strong style of tracking moving object;
event Flash mob has a strong style of browsing scenes; event Wedding ceremony shows fre-
quent zooming; and event Birthday party shows frequent facial close-up. This observation
on discriminative correlations suggests that videography analysis can actually be used for
challenging tasks such as retrieval (Sec. 5) and summarization (Sec. 6).

5 Application for Video Retrieval
In this section, we present our approach and experimental results for videography-based
video retrieval. In detail, we computed videography word bag-of-word (VW-BoW) repre-
sentations, where per-clip unigram features are built from sequence of VWs (regardless of
temporal ordering), for every clip. The goals are to examine (1) how well the proposed VW-
BoW feature can perform in retrieval tasks by itself, compared to other alternatives and with
detailed studies on contribution of each videography feature component, and (2) whether our
approach offers a useful modality to capture characteristics of video belonging to high-level
event classes, in comparison to other macro-level features such as GIST [12].

For dataset, we use TRECVID 2011 multimedia event detection (MED) corpus [1] as
our data, due to its large size, realistic content variability, and existing clip-level annota-
tions for 15 different event classes. Both the scale and complexity of the dataset are beyond
the widely-used datasets [5, 7]. Clips are frequently captured in unconstrained lighting and
camera motion conditions, exhibiting diverse degrees of encoding artifacts and severe back-
ground clutter, and heavily edited by owners using shot stitching, caption embedding, etc.
For training data, we use “Part-1 training data” (called event kits), which consists of videos
from 15 different event classes of 137 clips per class on average (total 2061 clips) with av-
erage duration of 4.2 minutes. From these training data, our VDs are computed by selecting
the best run out of 100 K-means clustering, and later used for test data. The 15 event types
are enlisted in the caption of Fig. 4, with events frequently exhibiting complex camera mo-
tion marked in bold faces. For test data, MED corpus provides two different subsets, “Part-1
DEV-T” for the first 5 event classes, and “MED11TEST” for the remaining 10 event classes,
with 4292 and 32061 total clips respectively. Both test datasets contain large amount of neg-
ative clips which do not belong to any of the target event classes, consequently, they serve
as realistic test-bed for retrieval experiments. The positive examples in the two test datasets
only constitute 2.34% and 0.37% on average per class respectively.

Our retrieval experiments are conducted using one-vs-all SVM classifiers, parameters of
which are tuned via cross-validation. The overall results are summarized in Fig. 4 and Table
1, where several experiments are conducted2. As performance metrics, average precision
(AP) is used. It is worth noting that APs for E06-E15 are lower than E01-E05, because the
relative ratio of negative samples in the test dataset for E06-E15 is about 10 times higher. In
detail, Chance denotes random retrieval and PTZ denotes the use of four-dimensional BoWs
of discrete camera motion types only (e.g., S/P/T/Z) without detailed videography features,
as comparative methods [19, 25]. The variations of our approaches are marked using ab-
breviations where J and C denote joint or concatenated VD learning, described in Sec. 4.
Additionally, B,F,C,S indicate the inclusion of BG motion, FG motion, BG/FG correlation,
and scale respectively, during VD learning. These experiments have been conducted to ex-
amine the usefulness of each videography feature for retrieval. The minus sign ‘−’ indicates

2Detailed numerical values of all experimental results can be found in supplemantal materials.

Citation
Citation
{Oliva and Torralba} 2001

Citation
Citation
{Tre} 

Citation
Citation
{Laptev, Marszalek, Schmid, and Rozenfeld} 2008

Citation
Citation
{Liu, Luo, and Shah} 2009

Citation
Citation
{Takagi, Hattori, Yokoyama, Kodate, and Tominaga} 2003

Citation
Citation
{Zhu, Elmagarmid, Xue, Wu, and Catlin} 2005



8 K. LI, S. OH, A.G.A. PERERA, Y. FU: VIDEOGRAPHY ANALYSIS

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

E01 E02 E03 E04 E05

Chance

PTZ

J_BF

J_BFC

J_BFS

J_BFCS

J_BFCS-

C_BFCS

GIST

Fusion
0.00

1.00

2.00

3.00

4.00

5.00

E06 E07 E08 E09 E10 E11 E12 E13 E14 E15

Chance

PTZ

J_BF

J_BFC

J_BFS

J_BFCS

J_BFCS-

C_BFCS

GIST

Fusion

11.91 

Figure 4: Average Precision (%) of video retrieval results on MED corpus, for 15 events:
(E01) Board trick, (E02) Feeding animal, (E03) Fishing, (E04) Wedding, (E05) Working
wood project, (E06) Birthday party, (E07) Change vehicle tire, (E08) Flash mob, (E09)
Getting vehicle unstuck, (E10) Groom animal, (E11) Make sandwich, (E12) Parade, (E13)
Parkour, (E14), Repair appliance, and (E15) Sewing project.

Table 1: Mean average precision (%) of video retrieval results on MED corpus, for two
separate test datasets of events (left) 1-5 and (right) 6-15 respectively. Fusion results are
obtained by combining J_BFCS and GIST. The results with dynamic events only are marked
with (D), which include events: E01, E04, E06, E08, E12, and E13.

mAP Chance PTZ J_BFCS J_BFCS(D) GIST GIST(D) Fusion Fusion(D)

E01-E05 2.34 5.63 13.61 24.50 8.57 10.34 17.74 30.35
E06-E15 0.37 0.62 1.19 2.08 1.61 2.22 2.81 4.99

that the VD has been pruned by filtering out VWs with low MI scores per event type. For
all the experiments with BoW-type features, histogram intersection kernel (HIK) was used
for SVM training and testing. In addition, GIST shows the results using GIST features [12]
with linear SVMs. Because GIST is a per-image feature, GIST features are computed on
frames extracted from labeled video clips. Then, one-vs-all SVMs were trained on image
features using clip labels. For testing, SVMs are applied on extracted images, then, scores
were averaged to produce a clip-level score. Apparently, VWs and GIST capture very dis-
tinct signals from data. Accordingly, in the experiment marked as Fusion, we have further
explored whether fusion of two modalities can lead to further improvement, which will show
whether these two feature types are complementary. For fusion, we have used the approach
of “late fusion” (e.g., [4]) where we have used the weighted sum of two classifiers as the
fusion score. Among VW-based approaches, J_BFCS was used because it has been shown
to provide best performance, and weights were determined by cross validation where equal
weights of <0.5, 0.5> were found to be best.

Overall, we can observe that VWs clearly provide advantage over the conventional sim-
pler alternative of using camera types only, i.e., PTZ. From Fig. 4, it can also be observed
that every videography feature contributes towards improving performance. Between joint
and concatenated VD learning, joint learning shows superior performance overall, possibly
due to the data-driven construction of the dictionary which avoids many empty (or rare) VWs
in concatenated learning. However, pruning VWs by MI scores does not seem to necessarily
boost performance. Table 1 shows mean average precision (mAP) for key experiments in
Fig. 4 on two test datasets. It can be observed that motion-based macro feature such as
videography can outperform GIST for E01-E05 in “Part-1 DEV-T” set, and E06, E08, E11,
E13, E14 in “MED11TEST” set. More importantly, the fusion results are much better than
either approach, indicating that two feature types are complimentary. Table 1 also shows
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mAPs for dynamic events only, where we observe big boost in performance for VWs. Inter-
estingly, the event classes which show clear discriminative correlation with VWs in Fig. 3(b)
are dynamic events, and they also show more advantage when VWs are used for retrieval.

6 Application for Video Summarization
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Figure 5: Videography-aware adaptive summarization. (Left) Segment scores are based
on MIs of corresponding VWs. Frames are selected at designated relative location within
segments. (Right) Three summarization results by this work (red rows) and baseline (blue
rows). Detected FG regions (green) and human judgements on relevance of key frames
(good:none, near-miss: yellow, miss: red) to associated events are marked on each image.

In this section, we present our videography-aware adaptive summarization method, which
is designed to highlight the segments with distinctive videography styles for particular events.
Our novel insight is that identification of segments from videos where cameramen are sys-
tematically exhibiting distinctive videography styles for particular events will provide unique
summarization, assuming that such segments are strongly correlated with the major region
of interest. While many works deliberately avoid the use of segments with motion due to
complexity, e.g., [10], such segments can be indeed crucial to characterize dynamic contents
in videos exhibiting frequent camera motion, frequently recorded by mobile devices.

In our approach, frames are extracted by two step procedures, as illustrated in Fig.
5(Left). First, key segments are selected based on segment scores, with optional weighted
sampling scheme in case there are more number of segments than the desired number of key
frames. For segment scores, MI scores have been used3. Then, key frames are extracted, one
per selected segment. In particular, our novel innovation is that frames are designed to be
extracted from different relative location within each segment based on their videography.
Two different types of key frame selection mechanisms were used: frames are selected (1)
in the middle of segments when videography is either stationary or indicates FG/BG corre-
lation (to capture peak of FG motion), and (2) at either end of segments when videography
indicates P/T/Z without FG/BG correlation (to capture the destination of shifting attention).

Qualitative summarization results are shown in Fig. 5(Right), where frames extracted
from same videos by our proposed method (red rows) and a conventional baseline (blue
rows) are compared, for three different event classes. The results of the baseline method were

3Without event labels, term frequency inverse document frequency (tf-idf) scores [8] can be used instead.
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obtained by extracting frames with highest scores based on color histogram changes, which
is very common [9]. It can be observed that our method is very effective in identifying unique
contents from clips. In particular, most extracted frames contain important visual moments
when the FG people are at the peak of their action or camera focus, such as skilled jumps
or before blowing a birthday cake candle. On the other hand, results by the baseline tend to
include frames that just exhibit strong changing background or even black frames around the
captions inserted by users. Overall, we observe that the proposed method can generate good
visual summaries, especially for clips which contain complex camera motions.

7 Conclusion
We have presented our framework for videography learning and analysis, and its applica-
tion for video summarization and retrieval. The introduced features and data-driven VD
learning helps to identify characteristic videography among videos from same events. Our
experiments show that meaningful summarization and retrieval results can be obtained us-
ing videography. Fusion results indicate that videography features capture unique aspects of
videos and can be jointly used with other features to improve retrieval substantially.
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