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Abstract

We present in this paper a novel learning-based approach for video sequence classifi-
cation. Contrary to the dominant methodology, which relies on hand-crafted features that
are manually engineered to be optimal for a specific task, our neural model automatically
learns a sparse shift-invariant representation of the local 2D+ t salient information, with-
out any use of prior knowledge. To that aim, a spatio-temporal convolutional sparse auto-
encoder is trained to project a given input in a feature space, and to reconstruct it from its
projection coordinates. Learning is performed in an unsupervised manner by minimizing
a global parametrized objective function. The sparsity is ensured by adding a sparsifying
logistic between the encoder and the decoder, while the shift-invariance is handled by
including an additional hidden variable to the objective function. The temporal evolution
of the obtained sparse features is learned by a long short-term memory recurrent neu-
ral network trained to classify each sequence. We show that, since the feature learning
process is problem-independent, the model achieves outstanding performances when ap-
plied to two different problems, namely human action and facial expression recognition.
Obtained results are superior to the state of the art on the GEMEP-FERA dataset and
among the very best on the KTH dataset.

1 Introduction and related work
Learning machines that are able to automatically build feature extractors instead of hand-
crafting them is a wide research area in pattern recognition. The main benefit of these models
is their high genericity since they can automatically learn to extract salient patterns directly
from the raw input, without any use of prior knowledge. Yet they have been shown to yield
excellent results in several tasks, e.g. object recognition [8, 10, 17, 19, 25], natural language
processing [3], and audio classification [18], their extension to the video case is still an open
issue. In this context, the dominant methodology in video sequence classification still relies
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on so-called engineered features, which are manually designed to be optimal for a specific
task. Indeed, the most popular state-of-the-art features depend on the targeted application.
For instance, in action recognition, we can mention Harris-3D [16], Cuboid [5], and Hessian
features [31], while in facial expression recognition, the most popular features are local
binary patterns (LBP) [24], Gabor [21] and Haar-like [30] features. The main purpose of this
paper is to introduce a task-independent model, which can be applied to different problems.

However, direct and unconstrained learning of complex problems is difficult, since (i)
the amount of required training data increases steeply with the complexity of the prediction
model and (ii) training highly complex models with very general learning algorithms is ex-
tremely difficult. It is therefore common practice to restrain the complexity of the model.
This is generally done either by forcing the model parameters to be identical for different
input locations (as in ConvNets [17]), or by operating on small patches to reduce the input
dimension and diversity, and to train the model in an unsupervised manner [25]. In this
paper, we propose a novel model of the latter category, which is adapted to the video case.

Most unsupervised learning techniques for feature extraction rely on auto-encoders, i.e.
an encoder trained to project a given input in a feature space, and a decoder which reconstruct
it from its projection coordinates (a.k.a the code). This procedure generally produces a
compact representation of the input content. However, several recent works advocate the use
of sparse-overcomplete representations, i.e. whose dimension is larger than the input one,
but where only a small number of components are non-zero. Several sparsifying procedures
have been presented in the literature, including the one proposed by Ranzato et al. [25] for
object recognition, which relies on a non-linear sparsifying logistic. Ranzato et al. have
presented a learning algorithm to train the sparse model, and a specific procedure to handle
shift-invariance. In this paper, we propose a solution based on the extension of this principle
to the video case, with a novel approach for handling shift-invariance. A spatio-temporal
convolutional sparse auto-encoder is trained to automatically build a sparse representation of
local spatio-temporal patterns of sub 2D+t blocks in the video. The entire video sequence is
then labelized considering the temporal evolution of these learned features, using a recurrent
neural network.

The rest of the paper is organized as follows. Section 2 presents the proposed model
for feature learning, and the corresponding training algorithm. We present in section 3 the
architectures of the encoder and the decoder used in our experiments. The recurrent neural
scheme for the entire sequence labelling is then described in section 4. Experimental results,
on the KTH human actions [26] and the GEMEP-FERA facial expressions [29] datasets, are
given in section 5. Finally, we conclude and give some perspectives of this work.

2 Unsupervised learning of sparse shift-invariant
spatio-temporal features

In this section, we describe the proposed approach for unsupervised learning of sparse spatio-
temporal features. We first introduce the proposed model, and then present the corresponding
training algorithm.

2.1 The model
Our sequence classification model is hierarchical: each element of the sequence corresponds
to a space-time block (a set of consecutive frames or of parts of frames) where each block
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Figure 1: Overview of the proposed model for unsupervised learning of sparse shift-invariant
spatio-temporal features.

itself is decomposed into a set of small space-time patches. The space-time patches are the
representation level on which learning is performed. The rationale of using small patches
is to reduce the diversity of the content to be encoded, since the patterns are locally less
variable than if the full frame was considered. The set of training patches will be denoted by
{Xi}i∈[1..P], they are of size M×M×T pixels each (where P is the number of training sample
patches, M and T are respectively the spatial and temporal sizes of the patch). The two main
parts of the proposed model are: an encoder (with trainable parameters WE ), which builds
a non-sparse code vector Zi representing the spatio-temporal salient information contained
in the input, and a decoder (with trainable parameters WD), which learns to reconstruct the
input volume from a sparse version Zi of the obtained code (see Figure 1).

As in [25], the system learns a compact code which can reconstruct the input. A spar-
sifying logistic between the encoder and the decoder restrains the size of the code. It is
a non linear function which can be seen as a SoftMax applied on consecutive samples of
the same code unit. Given the ith training sample, and its corresponding non-sparse code
Zi =

{
z(k)i

}
k∈[1..N]

, where N is the code size, the sparse code Zi =
{

z(k)i

}
k∈[1..N]

will be

expressed by:

z(k)i =
ηeβ z(k)i

ξ
(k)
i

with ξ
(k)
i = ηeβ z(k)i +(1−η)ξ

(k)
i−1 (1)

where η and β are positive parameters controling the code sparsity and softness (large η

values increase the number of samples used to compute ξ , and large β values yield quasi-
binary outputs). Due to the resulting strong non-linearities, the encoder and the decoder are
learned separately: for each training sample, when updating the parameters of one of the
two parts, those of the other part are kept constant. A third (and also separate) step produces
optimal code, in that its sparse version is the best decoded, while being close to the original
code. i.e. Zi is considered as an additional optimizable parameter. All three steps minimize
a single global objective function (see equation (2)) with respect to different parameters at
each step. Details are given in 2.2.

In order to handle the spatial and temporal shift-invariance of the learned representations
(i.e. the model assigns the same code to the spatially and temporally shifted versions of a
given input), we introduce an additional hidden variable ti (a three-dimensional translation
vector), on which the optimization is done. The idea is to represent the spatio-temporal
neighbourhood of a given input patch Xi by a single patch φ (Xi, ti), which is the one mini-
mizing the objective function, given the current set of parameters (WE ,WD) (see Figure 1).
Note that in practice, this procedure is started only after the first epoch (a full pass over all
the training samples) to ensure the relevance of the encoder/decoder parameters.
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Finally, the global objective function E is the one given by equation (2). It is a sum of
two terms, representing respectively the encoder prediction and the decoder reconstruction
mean square errors (MSE) on the translated patches:

E (Xi, ti,Zi,WE ,WD) = EE (Xi, ti,Zi,WE)+ED (Xi, ti,Zi,WD) (2)

= ‖Zi−Enc(WE ,φ (Xi, ti))‖2 +
∥∥Dec

(
WD,Zi

)
−φ (Xi, ti)

∥∥2

We describe in 2.2 how this objective function is minimized with respect to the parameters
(WE ,WD,Zi, ti).

2.2 Training procedure
The model is trained on-line, i.e. the parameters are updated after considering each training
sample. We aim to find, for a given input Xi, the optimal set of parameters (W ∗E ,W

∗
D,Z

∗
i , t
∗
i )

which minimize E. The training procedure is performed in three steps, each step aims to
minimize E with regard to one of the parameters keeping the others constant, as expressed
below. Here the notation E(a|b) emphasizes the fact that we optimize over parameters a
while keeping parameters b constant.

t∗i = argmin
ti

E (ti|Xi,Zi,WE ,WD) (3)

Z∗i = argmin
Zi

E (Zi|Xi, t∗i ,WE ,WD) (4)

(W ∗E ,W
∗
D) = argmin

WE ,WD

E (WE ,WD|Xi, t∗i ,Z
∗
i ) (5)

Thus, learning is performed with the following algorithm, applying steps 2-3-4 for each input
patch Xi:

1. (WE ,WD) are randomly initialized.

2. For a given Xi, an exhaustive search is performed in a spatio-temporal neighbourhood
to find t∗i as expressed in equation (3).

3. Given φ (Xi, t∗i ), equation (4) is minimized using steepest descent on the Zi parameter
to find the optimal code Z∗i .

4. WE and WD are updated using standard on-line backpropagation, targeting Z∗i and
φ (Xi, t∗i ) respectively for the encoder and the decoder, as expressed in equation (5).

The third step of this training algorithm requires the calculation of the partial derivative of
E with respect to Zi, for gradient computation. This partial derivative is approximated by a
finite difference, as expressed by equation (6), considering a small non-zero fixed value dZ.

∂E (Zi|Xi, t∗i ,WE ,WD)

∂Zi
=

E (Zi +dZ|Xi, t∗i ,WE ,WD)−E (Zi−dZ|Xi, t∗i ,WE ,WD)

dZ
(6)

In order to avoid encoding non-relevant patterns (e.g. colour and texture), and to reduce
the amount of data to be encoded, the model is trained only with the patches containing
significant spatio-temporal information. Thus, a motion-based patch selection module is
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Figure 2: Architecture of the spatio-temporal convolutional sparse auto-encoder: illustration
on a sample from the GEMEP-FERA facial expressions dataset.

placed before the encoder. It calculates an absolute difference between the frames T
2 and

−T
2 of the input (i.e. the first and the last ones), and retains those with a percentage of

moving pixels exceeding a certain threshold. This module plays the same role as the saliency
detectors in the case of the hand-crafted features, but does not use complex processing since
the outliers will be filtered during the training, and will not be encoded.

The next section details the architectures of the different modules.

3 The auto-encoder scheme
The functional forms of the encoder and decoder are specified with the architecture illus-
trated in Figure 2, which can be described as follows:

The encoder contains N trainable 3D convolution kernels of size M×M×T each. It takes
as input a small M×M×T spatio-temporal patch and learns to compute a non-sparse
code of size N corresponding to the response of each convolution, and encoding the
spatio-temporal salient information of the patch. Each M×M×T convolution kernel
contains an additional trainable bias and a linear activation function, thus, the total
number of trainable parameters of the encoder is (M×M×T +1)×N. To ensure
overcompleteness, N should be greater than or equal to the input dimension, but in
practice, since there is a high correlation between the T consecutive input frames,
even if N is smaller than M×M× T , the representation is still overcomplete. The
optimization of ti is performed for each component among values in [−M/4,M/4] for
the spatial shift and [−T/2,T/2] for the temporal one, i.e. the selected shifted-patch
is located in a 3M/2×3M/2×2T neighbourhood around the initial position.

The sparsifying logistic described in equation (1), is replaced, as in [25], by a classical
logistic function with a constant gain after training, since ξ turns to a fixed value
which is its mean over all training samples.

The decoder consists of a set of M×M×T output neurons fully connected to the sparse
code layer, and to an additional trainable bias. The total number of parameters of the
decoder is thus (N×M×M×T )+ 1. The output is a weighted sum of elementary
spatio-temporal patches (which will be called “basis” in the following), which corre-
sponds to the set of decoder responses, when stimulated with sparse codes that have
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Figure 3: A subset of learned basis elements: (a)- KTH human actions dataset. (b)- GEMEP-
FERA facial expressions dataset. On both illustrations, each basis element is composed of
three (T = 3) M×M images.

only one non-zero component equal to 1. Since the code is sparse, only few elements
of the basis are used to reconstruct each output (typically, in all our experiments, the
number of activated units has never exceeded N/8).

We depict in Figures 3-(a) and 3-(b) a subset of the learned basis respectively on the KTH
human actions [26] and GEMEP-FERA facial expressions [29] datasets. We can note that
no element of the basis is a shifted version of another one. The auto-encoder can reconstruct
each input patch by combining a few elements of this basis. For each reconstructed patch,
the coefficients of the basis elements correspond to the coordinates in the projection space
of the input patch. These coordinates are used hereafter as features to represent the patch
neighbourhood content. In the next section, we will present our proposed method to learn the
temporal evolution of these features, using a recurrent neural network trained for classifying
the entire sequences.

4 Sequence classification considering the temporal
evolution of learned features

Entire sequences are labeled with a particular recurrent neural network classifier, namely
Long Short-Term Memory Recurrent Neural Network (hereafter LSTM-RNN), in order to
take benefits of its ability to use the temporal evolution of features for classification. We first
present some LSTM-RNN fundamentals, and then describe the LSTM-RNN architecture for
sequence classification.

4.1 Long short-term memory recurrent neural networks
Intuitively, a Recurrent Neural Network (RNN) can be seen as a particular neural network
which can remember previous inputs and use them to influence the network output. This can
be done by using recurrent connections in the hidden layers, and makes them particularly
suited for temporal analysis of data, because of their ability to take into account the context.
Nevertheless, even if they are able to learn tasks which involve short time lags between
inputs and corresponding teacher signals, this short-term memory becomes insufficient when
dealing with “real world” sequence processing, e.g. video sequences.

The LSTM-RNN architecture was introduced by Hochreiter and Schmidhuber [11] in or-
der to alleviate this problem by adding a special node, called constant error carousel (CEC).
This allows for constant error signal propagation through time, and thus, provides remedies
for the RNN’s problem of exponential error decay [11]. Recently, improved versions of the
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Figure 4: Illustration of the feature sequence generation and the LSTM-RNN classification.

LSTM-RNN were proposed [9], in which multiplicative gates are added to control the access
to the internal state of the CEC. Graves and Schmidhuber [9] also introduced a so-called bidi-
rectional LSTM-RNN model, i.e. two separate LSTM-RNNs, both connected to an output
layer, and to which each training sequence is presented in forward and backward directions.
This permits to introduce more context, and thus to improve the classification performances
[9]. LSTM-RNN have been tested in many applications, like phoneme classification [9] or
action recognition [1], and generally outperformed existant methods. In this paper, the clas-
sification part of all experiments was carried out using the model proposed by Graves and
Schmidhuber in [9], fed with the sparse spatio-temporal features.

4.2 The proposed architecture
If we denote by H and W respectively the number of rows and columns of the original video
frame, by L the sequence length, and by N the sparse code size, the LSTM-RNN takes as
input a sequence of L feature vectors of size W/M×H/M×N, each one corresponding to the
concatenated responses of the M×M×T patches placed at the W/M×H/M grid of possible
locations in each space-time block. Figure 4 illustrates this principle on a sample taken from
the KTH human actions dataset. The LSTM cells are fully connected to these inputs and
have also auto-recurrent connections. For the output layer, we used the SoftMax activation
function, which is standard for 1 out of K classification tasks. The SoftMax function ensures
that the network outputs are all between 0 and 1, and that their sum is equal to 1 at every
timestep. These outputs can then be interpreted as the posterior probabilities of the actions
at a given timestep. In all our experiments, the hidden layer contains 5 LSTM neurons
for each direction (forward and backward). The network was trained with standard online
backpropagation through time with momentum [9, 11].

5 Experimental results

5.1 Human action recognition
The KTH dataset [26] is the most commonly used dataset for human action recognition.
It contains 6 types of actions (boxing, clapping, waving, walking, jogging and running)
performed by 25 subjects in 4 different scenarios. As in [7], we rename the KTH dataset
in two ways: the first one (the original one) where each person performs the same action
3 or 4 times in the same video, is named KTH1 and contains 599 long sequences with
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Boxing Clapping Waving Walking Jogging Running Avg.
KTH1 98.00 98.00 98.00 99.00 93.00 89.00 95.83
KTH2 97.67 94.00 96.98 99.23 89.22 85.36 93.74

Table 1: Obtained results on the KTH human actions dataset.

Dataset Features Method Accuracy
Learned Ours 95.83

Jhuang et al. [13] 91.70
KTH1 Gao et al. [7] 96.33

Hand-crafted Chen and Hauptmann [2] 95.83
Liu and Shah [22] 94.20

Ours 93.74
Learned Ji et al. [14] 90.20

KTH2 Taylor et al. [28] 90.00
Kim et al. [15] 95.33

Hand-crafted Ikizler et al. [12] 94.00
Gao et al. [7] 92.45

Table 2: Comparison of obtained results on KTH dataset with the state-of-the-art.

several “empty” frames between action iterations. The second, named KTH2, is obtained
by splitting videos into smaller ones with no empty frame, and contains 2391 sequences.
For each original video, we extracted the person-centered bounding box as in [13], and
performed spatial down-sampling by a factor of 2 horizontally and vertically. The resulting
frame dimensions are H = 54 and W = 34. The model was trained as described above,
with input patches of size 8×8×3, encoded to a sparse code of size 192. For the sparsifying
logistic, η and β were fixed respectively to 0.02 and 1.5 for all our experiments. The LSTM-
RNN input size is 4608 per time step, which corresponds to the concatenated responses of the
4×6 possible locations of the input patches in the original space-time block. We performed
leave-one-out cross validation as recommended by Gao et al. in [7] and reported the average
accuracies per class in Table 1. We can notice that the best performances are obtained for
the class walking, because of the characteristic low-speed motion existing in this action,
which is a highly discriminative information for the LSTM-RNN model. We also observe
that the long sequences (KTH1) achieve better performances than the short ones (KTH2),
confirming the fact that LSTM-RNNs are more suited for long sequences. We also compare
in Table 2 obtained results to related works on the KTH dataset. Among the methods using
automatically learned features, to our knowledge, our method obtained the best results, both
on KTH1 (95.83%) and KTH2 (93.74%). More generally, according to the survey made
by Gao et al. in [7], we obtain the second best results for KTH1, and the third for KTH2,
even when compared with approaches relying on hand-crafted features designed for the KTH
dataset.

5.2 Facial expression recognition
The GEMEP-FERA dataset [29] is a recent facial expressions dataset that was initially pre-
sented for the facial expression recognition and analysis challenge (FERA 2011). The emo-
tion sub-challenge dataset contains 5 types of facial expressions (anger, fear, joy, relief and
sadness) displayed by 10 actors, while uttering a meaningless phrase or a sustained vowel
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Anger Fear Joy Relief Sadness Avg.
PI 100.0 93.33 95.00 68.75 46.67 80.75
PS 92.31 100.0 100.0 100.0 100.0 98.46

Overall 96.30 96.00 96.77 80.77 68.00 87.57
Table 3: Obtained results on the GEMEP-FERA facial expressions dataset.

Method PI PS Overall
Ours 80.75 98.46 87.57

Yang and Bhanu [32] 75.23 96.18 83.78
Tariq et al. [27] 65.50 100.0 79.80

Littlewort et al. [20] 71.40 83.70 76.10
Dhall et al. [4] 64.80 88.70 73.40

Meng et al. [23] 60.90 83.70 70.30
Valstar et al. [29] 44.00 73.00 56.00

Table 4: Comparison of obtained results on GEMEP-FERA dataset with the state-of-the-art.

“aaa”. The training set contains 155 video sequences and includes 7 subjects, while the test
set contains 134 sequences and 6 subjects, 3 of which are not present in the training set. This
enables to test the method on both person independent (PI) and person specific (PS) settings,
to evaluate the generalization power. The dataset is particularly challenging since a high
intra-class confusion exists even for a human (between joy/relief and anger/fear/sadness).
In addition, the original videos are not face-centered and include several non-facial move-
ments (hands, body...), which implies that a face detection process should be applied (which
is not straightforward since high blurs are present). The face-centered bounding box was
extracted from the original 3-channel frames of size 720× 567 using the the convolutional
face finder [8] (which achieved near-perfect results), and consecutive face-centered images
were aligned using the approach proposed in [6]. Some alignement imprecision still exists,
but will be handled by the shift-invariance property of the proposed system. The extracted
images finally underwent grayscale transform and size rescaling to 64×64. The model was
trained with input patches of size 8×8×3, encoded into a sparse code of size 128, with the
same parameter values used for human actions recognition. The LSTM-RNN input size is
8192 per timestep (8×8 codes of size 128 each). We followed the same benchmark proce-
dure as for the original challenge (which is described in the baseline paper [29]). Average
accuracies per class, both for person-independant and person-specific configurations, are re-
ported in Table 3. We also present in Table 4 a comparison with the best results obtained
in the FERA 2011 Challenge. Up to our knowledge, no other approach gives a better per-
formance on this dataset (87.57% for the overall classification rate), with +3.79 percentage
points improvement on the result presented by Yang and Bhanu [32], which are the winners
of the challenge. Moreover, the obtained high score on the person-independent configuration
is a positive evidence of the high generalization of our approach, and that it eliminates the
person-specific effect and captures the facial expression salient information.

6 Conclusion and future work

In this paper, we have presented a neural model for sequence classification, which differs
from the dominant methodology in that the feature construction process is learning-based
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and fully automated. We have introduced the spatio-temporal convolutional sparse auto-
encoder architecture, which builds a sparse representation of 2D+ t patterns present in the
video. We have described how the model is trained only with the patches containing relevant
space-time information, to avoid encoding uninteresting patterns. We have also presented
a novel approach for handling both spatial and temporal shift-invariance of the representa-
tion, by including an additional hidden variable to the objective function. Finally, we have
shown how the temporal evolution of these features is used to classify the sequences, using
a recurrent neural network model. Experimental results on two different problems, namely
human actions and facial expressions recognition, confirms the high genericity of the model
since it achieves the best results among related works, even when compared to methods using
hand-crafted features. Future work will address scale invariance and applications to different
problems.
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