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Abstract

Current state-of-the-art action classification methods extract feature representations
from the entire video clip in which the action unfolds, however this representation may
include irrelevant scene context and movements which are shared amongst multiple ac-
tion classes. For example, a waving action may be performed whilst walking, however if
the walking movement and scene context appear in other action classes, then they should
not be included in a waving movement classifier. In this work, we propose an action
classification framework in which more discriminative action subvolumes are learned
in a weakly supervised setting, owing to the difficulty of manually labelling massive
video datasets. The learned models are used to simultaneously classify video clips and
to localise actions to a given space-time subvolume. Each subvolume is cast as a bag-of-
features (BoF) instance in a multiple-instance-learning framework, which in turn is used
to learn its class membership. We demonstrate quantitatively that even with single fixed-
sized subvolumes, the classification performance of our proposed algorithm is superior
to the state-of-the-art BoF baseline on the majority of performance measures, and shows
promise for space-time action localisation on the most challenging video datasets.

1 Introduction
Human action recognition from video is becoming an increasingly prominent research area
in computer vision, with far-reaching applications. On the web, the recognition of human
actions will allow the organisation, search, description, and retrieval of information from
the massive amounts of video data uploaded each day [14]. In every day life, human action
recognition has the potential to provide a natural way to communicate with robots, and novel
ways to interact with computer games and virtual environments.

In addition to being subject to the usual nuisance factors such as variations in illumina-
tion, viewpoint, background and part occlusions, human actions inherently possess a high
degree of geometric and topological variability [3]. Various human motions can carry the
exact same meaning. For example, a jumping motion may vary in height, frequency and
style, yet still be the same action. Action recognition systems need then to generalise over
actions in the same class, while discriminating between actions of different classes [21].
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Figure 1: A boxing video sequence taken from the KTH dataset [22] plotted in space and
time. Notice that in this particular video, the camera zoom is varying with time, and fea-
tures (black dots) were extracted from all space-time locations. Overlaid on the video are
discriminative cubic action subvolumes learned in a max-margin multiple instance learning
framework (§ 2.2), with colour indicating their class membership strength. Since the scene
context of the KTH dataset is not discriminative of the particular action, only subvolumes
around the actor were selected as positive instances (best viewed in colour).

Despite these difficulties, significant progress has been made in learning and recognising hu-
man actions from videos [21, 28]. Whereas early action recognition datasets included videos
with single, staged human actions against homogeneous backgrounds [2, 22], more recently
challenging uncontrolled movie data [17] and amateur video clips available on the Internet
[14, 19] are being used to evaluate action recognition algorithms.

Current state-of-the-art [7, 14, 18, 27] action clip classification methods derive an ac-
tion’s representation from an entire video clip, even though this representation may contain
motion and scene patterns pertaining to multiple action classes. For example, actions such
as boxing and hand-clapping may be performed whilst walking, standing or skipping, against
a similar scene background. The presence of similar sub-motions or scene parts can there-
fore negatively affect recognition rates. We therefore propose a framework in which action
models are derived from smaller portions of the video volume, subvolumes, which are used
as learning primitives rather than the entire space-time video. In this way, more discrimina-
tive action parts may be selected which most characterise those particular types of actions.
An example of learned action subvolumes is shown in Fig. 1.

Previous Work
The current state-of-the-art algorithms for the classification of challenging human action
data are based on the bag-of-features (BoF) on spatio-temporal volumes approach [17, 26].
Typically, in a first stage, local spatio-temporal structure and motion features are extracted
from video clips and quantised to create a visual vocabulary. A query video clip is then rep-
resented using the frequency of the occurring visual words, and classification is done using
a χ2 kernel support vector machine (SVM). The surprising success of the BoF method may
be attributed to its ability to aggregate statistical information from local features, without re-
gard for the detection of humans, body-parts or joint locations which are difficult to robustly
detect in unconstrained action videos. However, its representational power diminishes with
dataset difficulty (e.g. Hollywood2 dataset [20]) and an increased number of action classes
(e.g. HMDB dataset [14]). This may be partly due to the fact that current BoF approaches
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represent entire video clips [27] or subsequences defined in a fixed grid [17]. Thus, many
similar action parts, and background noise are also included in the histogram representa-
tion. By splitting up the video clip into overlapping subvolumes, a video clip is instead
represented as a bag of histograms, some of which are discriminative of the action at hand
(‘positive’ subvolumes) while others (‘negative’ ones) may hinder correct classification. A
more robust action model can therefore be learned based on these positive subvolumes in the
space-time video. Moreover, the classification of subvolumes has the additional advantage
of indicating where the action is happening within the video.

In previous work, the BoF approach has been coupled with single frame person/action
detection to gain more robust performance, and to estimate the action location [12, 16].
In contrast, by learning discriminative action subvolumes from weakly-labelled videos, the
method we propose allows action localisation without using any training ground truth infor-
mation, in a similar spirit to [7, 19]. Unlike previous work, however, we select discrimina-
tive feature histograms and not the explicit features themselves. Moreover, instead of using
a generative approach such as pLSA [30], we use a max-margin multiple instance learning
(mi-SVM) framework to handle the latent class variables associated with each space-time
action part.

Some insight to MIL comes from its use in the context of face detection [25]. Despite the
availability of ground truth bounding box annotation, the improvement in detection results
when compared to those of a fully supervised framework suggested that there existed a more
discriminative set of ground truth bounding boxes than those labelled by human observers.
The difficulty in manual labelling arises from the inherent ambiguity in labelling objects or
actions (bounding box scale, position) and the judgement, for each image/video, of whether
the context is important for that particular example or not. A similar MIL approach was
employed by Felzenszwalb and Huttenlocher [6] for object detection in which possible object
part bounding box locations were cast as latent variables. This allowed the self-adjustment
of the positive ground truth data, better aligning the learned object filters during training.
In action detection, Hu et al. used an MIL learning framework called SMILE-SVM [8];
however, this focused on the detection of 2D action boxes, and required the approximate
labelling of the frames and human heads in which the actions occur. In contrast, we propose
casting the space-time subvolumes of cubic/cuboidial structure as latent variables, with the
aim to capture salient action patches relevant to the human action.

In action clip classification only the label of each action clip is known, and not the labels
of individual parts of the action clip. Thus, this problem is inherently weakly-labelled, since
no approximate locations of the actions or ground truth action bounding boxes are available.
That is why we propose to learn action subvolumes in a weakly-labelled, multiple instance
learning (MIL) framework. Human action classification is then achieved by the recognition
of action instances in the query video, after devising a sensible mapping from recognition
scores to the final clip classification decision.

Contributions
The contributions of this work are as follows: i) We cast the conventionally supervised BoF
action clip classification approach into a weakly supervised setting, where clips are repre-
sented as bags of histogram instances with latent class variables. ii) In order to learn the
subvolume class labels, we apply multiple instance learning to 3D space-time videos (§2.2),
as we maintain that actions are better defined within a subvolume of a video clip rather
than the whole video clip itself. iii) Finally we propose a mapping from instance decisions
learned in the mi-SVM approach to bag decisions (§2.3), as a more robust alternative to the
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current bag margin MIL approach of taking the sign of the maximum margin in each bag.
This allows our MIL-BoF approach to learn the labels of each individual subvolume in an
action clip, as well as the label of the action clip as a whole. The resulting action recognition
system is suitable for both clip classification and localisation in challenging video datasets,
without requiring the labelling of action part locations.

2 Methodology
The proposed action recognition system is composed of three main building blocks: i) the
description of space-time videos via histograms of Dense Trajectory features [27] (§2.1),
ii) the representation of a video clip as a “bag of subvolumes”, and the learning of positive
subvolumes from weakly labelled training sequences within a max-margin multiple instance
learning framework (§ 2.2), and iii) the mapping of instance/subvolume scores to bag/clip
scores by learning a hyperplane on instance margin features (§ 2.3).

2.1 Feature representation
A variety of interest point detectors (IPDs) are being used for 3D spatio-temporal sequence
representation [26]. Whereas sparse features obtained using IPDs (Harris3D [15], Cuboid
[5], Hessian [29]) allow compact video representations, IPDs are not designed to capture
smooth motions associated with human actions, and tend to fire on highlights, shadows, and
video frame boundaries [7, 10]. Furthermore, Wang et al. [26] demonstrated that dense
sampling outperformed IPDs in real video settings such as the Hollywood2 dataset [20],
implying that interest point detection for action recognition is still an open problem.

A plethora of video patch descriptors have been proposed for space-time volumes, mainly
derived from their 2D counterparts: Cuboid [5], 3D-SIFT [23], HoG-HoF [17], HOG3D
[11], extended SURF [29], and C2-shape features [9]. More recently, Wang et al. [27] pro-
posed Dense Trajectory features, which when combined with the standard BoF pipeline [26],
outperformed the recent Learned Hierarchical Invariant features by Le et al. [18]. Therefore,
even though this framework is independent from the choice of features, we use the Dense
Trajectory features of Wang et al. [27] to describe space-time video blocks.

The Dense Trajectory features are extracted densely from a video at multiple spatial
scales. A pruning stage eliminates static trajectories such as those found on homogeneous
backgrounds, and spurious trajectories which may have drifted. The descriptor is formed
by the sequence of displacement vectors in the trajectory, together with the HoG-HoF de-
scriptor [17] and the motion boundary histogram (MBH) descriptor [4] computed over a
local neighbourhood along the trajectory. The MBH descriptor represents the gradient of
the optical flow, and captures changes in the optical flow field, suppressing constant motions
(e.g. camera panning), and capturing salient movements. Thus, Dense Trajectories capture a
trajectory’s shape, appearance, and motion information [27]. Due to its success with action
recognition in realistic settings, we use the BoF approach to describe space-time subvolumes.
The detailed BoF parameter settings are listed in Section 3.

2.2 MIL-BoF action models
Unlike previous BoF action clip classification approaches which generate one histogram
descriptor per action clip, either by counting the occurrences of visual words in the whole clip
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Figure 2: Instead of defining an action as a space-time pattern in an entire video clip (left),
we propose to define an action as a collection of space-time action parts contained in video
subvolumes (right). One ground-truth action label is assigned to the entire space-time video,
while the labels of each action subvolume are initially unknown. Multiple instance learning
is used to learn which subvolumes are particularly discriminative of the action (solid-line
cubes), and which are not (dotted-line cubes).

[22, 27], or by concatenating histograms from a spatial grid [17], we represent each video as
a bag of possible histograms, as illustrated in Fig. 2. Each video volume is decomposed into
multiple subvolumes, each of which is associated with a histogram of visual words and a
latent variable representing its action class membership. This approach essentially converts
the problem of whether an action clip contains a particular action, to whether smaller space-
time fragments of the action clip contain the action. Thus each video is now represented by
a bag of histograms, for which their individual class membership is initially unknown.

The task here is to learn the class membership of each subvolume and an action model to
represent each action class. In action classification datasets, an action class label is assigned
to each video clip, assuming that one action occurs in each clip. This may be cast in a weakly
labelled setting, where it is known that a positive example of the action exists within the clip,
but the exact location of the action is unknown. If the label of the video clip/bag is positive,
then it is assumed that a proportion of instances in the bag will also be positive. If the bag
has a negative label, then all the instances in the bag must retain a negative label.

The learning task may be cast in a max-margin multiple instance learning framework, of
which the pattern/instance margin formulation [1] is best suited for space-time subvolume
localisation. Let the training set D = (〈X1,Y1〉, ..., 〈Xn,Yn〉) consist of a set of bags Xi =
{xi1, ...,ximi} of different length and corresponding ground truth labels Yi ∈ {−1,+1}. Each
instance xi j ∈ R represents the jth BoF model in the bag: its label yi j does exist, but is
unknown for the positive bags (Yi = +1). The class label for each bag is positive if there
exists at least one positive example in the bag, that is, Yi = maxj{yi j}. Therefore the task of
the mi-MIL is to recover the latent variable yi j of every instance in the positive bags, and to
simultaneously learn an SVM instance model 〈w,b〉 to represent each action class.

The max-margin mi-SVM learning problem results in a semi-convex optimisation prob-
lem, for which Andrews et al. proposed a heuristic approach [1]. In mi-SVM, each example
label is unobserved, and we maximise the usual soft-margin jointly over hidden variables
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Algorithm 1 Heuristic algorithm proposed by [1] for solving mi-SVM.
STEP 1. Assign positive labels to instances in positive bags: yi j = Yi for j ∈ i
repeat

STEP 2. Compute SVM solution 〈w,b〉 for instances with estimated labels yi j.
STEP 3. Compute scores fi j = wT xi j +b for all xi j in positive bags.
STEP 4. Set yi j = sgn( fi j) for all j ∈ i, Yi = 1.
for all positive bags Xi do

if ∑ j∈i(1+ yi j)/2 == 0 then
STEP 5. Find j∗ = argmax

j∈i
fi j, and set y∗i j =+1

end if
end for

until class labels do not change
Output w,b

and discriminant function:

min
yij

min
w,b,ξ

1
2
‖w‖2 +C∑

i j
ξi j, (1)

subject to ∀i, j : yi j(wT xi j +b)≥ 1−ξi j, ξi j ≥ 0, yi j ∈ {−1,1},

where w is the normal to the separating hyperplane, b is the offset, and ξi j are slack variables
for each instance xi j.

The heuristic algorithm proposed by Andrews et al. to solve the resulting mixed integer
problem is laid out in Algorithm 1. Consider training a classifier for a walking class action
with all the action subvolumes generated from the walking videos in the training set. Initially
all the instances/subvolumes are assumed to have the label of the parent bag/video (STEP 1).
Next, a walking action model estimate 〈w,b〉 is found using the imputed labels yi j (STEP 2),
and scores for each subvolume in the bag are estimated with the current model (STEP 3).
Whilst the negative labels always remain negative, the positive labels may retain their current
label, or switch to a negative label (STEP 4). If, however, all instances in a positive bag
become negative, then the least negative instance in the bag is set to have a positive label
(STEP 5), thus ensuring that there exists at least one positive example in each positive bag.

Now consider a walking video instance whose feature distribution is also present in video
subvolumes of other action classes. This kind of video instance will have a positive label if it
originated from the walking videos, and a negative label from those similar instances drawn
from the videos of the other classes (assuming a 1-vs-all classification approach). Thus,
when these instances are reclassified in a future iteration, it is likely that their class label will
switch to negative. As the class labels are updated in an iterative process, eventually only the
most discriminative instances in each positive bag are retained as positive.

2.3 A mapping from instance to bag labels in the MIL framework
The instance margin formulation detailed in the previous section aims at recovering the latent
variables of all instances in each positive bag. When recovering the optimal labelling and the
optimal hyperplane, all the positive and negative instances in a positive bag are considered.
Thus, a query subvolume is predicted to have a label ŷi j = sgn(wT xi j + b). A similar MIL
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approach called the “bag margin” formulation is typically adopted to predict the label of the
bag from its instances. This approach, unlike the instance margin formulation, only considers
the “most positive” pattern in each positive bag. Therefore, predictions take the form:

Ŷi = sgn max j∈i(wT xi j +b). (2)

In order to avoid retrieving the bag label by performing a bag-margin iterative procedure
similar to the one detailed in section 2.2, we propose a simple and robust alternative method
to predict the bag margins from the instance margins. One solution is use the same max
decision rule in (2), or to take a threshold on some quantities, such as the number of positive
subvolumes, or the mean value of all subvolume scores. Since the number of subvolumes
may vary greatly between videos, this cannot be trivially solved by normalisation. Consider
a neatly performed action which only takes a small volume of the video clip. In an ideal case,
there would be large scores for subvolumes containing the action, and low scores elsewhere.
Clearly, the normalised mean score/fraction of positive subvolumes would be very low, even
though there was a valid action in the clip.

A simpler and more robust solution is to construct a hyperplane separating instance mar-
gin features Fi obtained from the positive and negative bags. Instead of learning a classifier
from the margin values directly, which will vary in number greatly depending on the num-
ber of instances in each clip, we consider six features of the instance/subvolume margins
fi j = wT xi j +b in each clip i:

Fi =
[
#pos, #neg, #pos/#neg, 1/n∑ j( fi j), max j∈i( fi j),min j∈i( fi j)

]
, (3)

where #pos and #neg are the number of positive/negative instances in each bag respectively.
Thus, the instance margins are mapped to a six-dimensional feature vector, and a decision
boundary is learned in this constant dimensional space.

3 Experimental Evaluation & Discussion
In order to validate our action recognition system, we evaluated its performance on four
challenging action datasets, namely the KTH, YouTube, Hollywood2 and HMDB datasets.
We give a brief overview of the datasets and the baseline pipeline, followed by the details of
our MIL-BoF experimental setup (§ 3.1), and an ensuing discussion (§ 3.2).

Datasets and experimental setup
The KTH dataset [22] contains 6 action classes each performed by 25 actors, in four scenar-
ios. We split the video samples into training and test sets as in [22]; however, we consider
each video clip in the dataset to be a single action sequence, and do not further slice the
video into clean, smaller action clips. This shows the robustness of our method to longer
video sequences which include noisy segments in which the actor is not present.

The YouTube dataset [19] contains 11 action categories and presents several challenges
due to camera motion, object appearance, scale, viewpoint and cluttered backgrounds. The
1600 video sequences are split into 25 groups, and we follow the author’s evaluation proce-
dure of 25-fold, leave-one-out cross validation.

The Hollywood2 dataset [20] contains 12 action classes collected from 69 different Hol-
lywood movies. There are a total of 1707 action samples containing realistic, unconstrained
human and camera motion. The dataset is divided into 823 training and 884 testing se-
quences, as in [20], each from 5-25 seconds long.
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The HMDB dataset [14] contains 51 action classes, with a total of 6849 video clips
collected from movies, the Prelinger archive, YouTube and Google videos. Each action
category contains a minimum of 101 clips. We use the non-stabilised videos with the same
three train-test splits as the authors [14].

In order to make the comparison across different datasets fairer, all clips were down-
sampled to a common 160×120 resolution. For each dataset, we present both the state-of-
the-art result as reported in the literature, and the baseline BoF results in our own implemen-
tation, to which we compare our MIL-BoF on subvolumes framework. As performance mea-
sures, we report the accuracy (Acc) calculated as the #correctly classified testing clips/#total
testing clips, the average precision (AP) which considers the ordering in which the results
are presented, and the F1-score which weights recall and precision equally and is calculated
as: F1 = (2× recall×precision)/(recall+precision). Unlike previous work, we are the first
to report all three performance measures for each dataset, to give a more complete picture
of the overall algorithm performance.

Baseline BoF algorithm
We have implemented the baseline BoF approach described in [26] to ensure a fair compar-
ison between BoF and MIL-BoF. A codebook is generated by randomly sampling 100,000
features and clustering them into 4000 visual words by k-means. Descriptors are assigned to
their closest vocabulary word using the Euclidean distance, and the resulting histograms of
visual words used to represent each video clip. We report the performance achieved using
a χ2 kernel SVM [26], and perform multi-class classification using the one-vs-all approach.
We fix the histogram normalisation to the L1-norm, and we make no attempt to optimise the
SVM regularisation parameters across the various datasets. We keep C=100 throughout, the
same value used by [18, 26].

3.1 MIL-BoF experimental setup

The same BoF setup as the baseline has been used for the MIL-BoF approach. Subvolumes
are extracted from a regular grid with a grid spacing of 20 pixels in space and time. Results
are reported for a number of different MIL-BoF models, each characterised by different
cube-[60-60-60], [80-80-80], [100-100-100] or cuboid-[80-80-160], [80-160-80], [160-80-
80] shaped subvolumes, where [x-y-t] denotes the dimensions of the subvolume. In addition,
we also allow for a certain type of cuboid to stretch along the total time duration of the clip
[80-80-end], in a similar spirit to the weak geometrical, spatial pyramid approach of [17].

The decomposition of a video into multiple subvolumes, each with the same histogram
dimensionality as used in the baseline, makes the learning problem at hand large-scale.
Typical values for the number of instances generated from the KTH dataset range between
100,000-200,000. In practice calculating the full χ2 kernel takes a prohibitively long time
to compute. Recent work by Vedaldi and Zisserman on the homogeneous kernel map [24]
demonstrates the feasibility of large scale learning with non-linear SVMs based on additive
kernels, such as the χ2 kernel. The map provides an approximate, finite dimensional feature
representation in closed form, which gives a very good approximation of the desired kernel
in a compact linear representation. The map parameters were set to N=2, and gamma=0.5,
which gives a 2n + 1 dimensional approximated kernel map for the χ2 kernel. Similarly to
the baseline, we keep the SVM parameters constant across all datasets at C=0.1, which has
proven to give good results in practice. The quantitative results are shown in Table 1.
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Table 1: Quantitative results from BoF and MIL-BoF methods.

Dataset KTH YOUTUBE HOHA2 HMDB
Perf. measure mAcc mAP mF1 mAcc mAP mF1 mAcc mAP mF1 mAcc mAP mF1
State-of-the-art 94.53[7, 13]– – 84.2[27] – – – 58.3[27] – 23.18[14]– –
BoF 95.37 96.48 93.99 76.03 79.33 57.54 39.04 48.73 32.04 31.53 31.39 21.36
MIL-BoF 60-60-60 94.91 96.48 94.22 73.40 81.04 70.04 38.49 43.49 39.42 27.64 26.26 23.08
MIL-BoF 80-80-80 95.37 97.02 94.84 77.54 83.86 73.94 37.28 44.18 37.45 28.69 29.03 25.28
MIL-BoF 100-100-100 93.52 96.53 93.65 78.60 85.32 76.29 37.43 40.72 32.31 27.51 28.62 23.93
MIL-BoF 80-80-160 96.76 96.74 95.78 80.39 86.06 77.35 37.49 41.97 33.66 28.17 29.55 25.41
MIL-BoF 160-80-80 96.30 96.58 94.44 79.05 85.03 76.07 36.92 42.08 32.11 28.98 30.50 24.76
MIL-BoF 80-160-80 95.83 96.62 94.41 78.31 84.94 75.74 37.84 42.61 35.33 28.71 28.82 25.26
MIL-BoF 80-80-end 96.76 96.92 96.04 79.27 86.10 75.94 39.63 43.93 35.96 29.67 30.30 25.22

3.2 Discussion

On the KTH dataset the MIL-BoF approach surpassed the baseline BoF in all three perfor-
mance measures, demonstrating a clear advantage of representing videos with subvolumes
on this dataset. Common scene and motion elements were pruned by the multiple-instance
learning as shown in Fig 1, resulting in a stronger action classifier per class. Contrary to
our expectations, both the BoF and MIL-BoF surpassed the state-of-the-art accuracy, which
may be attributed to using the whole action videos rather than clean action slices during
training. The best result was achieved using a subvolume model more extended in time
than in space [80-80-160], that achieved 96.76% accuracy. Similarly on the YOUTUBE
dataset, the MIL-BoF framework outperformed the baseline BoF on all performance mea-
sures, achieving a 4.36%, 6.73%, and 19.81% increase in accuracy, average precision and
F1 score respectively. This demonstrates the MIL-BoF ability to learn more robust action
models on challenging YouTube data. The MIL-BoF approach did not improve the AP com-
pared to the baseline on the HOHA2 dataset, however, this was made up for by a 0.59%
increase in Accuracy and a 7.38% improvement on the F1 score, which weights precision
and recall equally. On the HMDB dataset, we report a BoF baseline performance superior
to the current state-of-the-art. Similarly to the Hollywood2 dataset, our MIL-BoF approach
outperforms the BoF baseline on the F1 score, in this case by 4.05%. In accord with ob-
servations in [17], we achieve good results with subvolume primitives in which there is no
temporal subdivision of the sequence [80-80-end], however, we show that a temporal subdi-
vision of the action sequence [80-80-160] can in fact result in a sizable improvement over
considering no temporal subdivision at all, as may be seen in the F1-scores of the YOUTUBE
[80-80-160] and HOHA2 [60-60-60] dataset.

Our MIL-BoF algorithm is not guaranteed to converge to the optimal solution, and may
be one reason why it did not improve over the baseline Accuracy and AP on the HMDB
dataset. However, bear in mind that the full χ2 kernel is calculated for the BoF baseline
whilst the linear approximation [24] was used in the MIL-BoF. We expect the results to im-
prove further in the case of full resolution videos. Moreover, due to the large computational
cost associated with space-time subvolumes, the full potential of our algorithm has yet to
be realised, when a more general mixture of subvolume primitives is tailored automatically
for each action class. Despite these current setbacks, the MIL-BoF method still outperforms
the baseline BoF method in all performance measures on the KTH and YOUTUBE dataset,
whilst outperforming the HOHA2 and HMDB on the F1 score, even with fixed-sized sub-
volumes. Finally, in addition to clip classification, the MIL-BoF method is able to localise
challenging actions in space-time, such as the DriveCar and GetOutOfCar actions in the
HOHA2 dataset shown in Fig 3(a) & 3(b).
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(a) actioncliptest00032 (b) actioncliptest00058

Figure 3: Action localisation results on two challenging videos from the Hollywood2 dataset,
which we encourage the reader to watch in addition to this figure. The colour of each box in-
dicates the positive rank score of the subvolume belonging to a particular class (green-red).
(a) Actioncliptest00032 begins with two people chatting in a car. Half-way in, the camera
shot changes to a view from the roof of the car. Finally the shot returns to the two people,
this time the steering wheel is visible and the driving action is evident. This is reflected by
the densely detected, high scoring subvolumes towards the end of actioncliptest00032. (b)
In actioncliptest00058, a woman is getting out of her car, however, this action occurs in the
middle of the video and not at the beginning or end, as indicated by the detected subvolumes.

4 Conclusion
We proposed a novel MIL-BoF approach to action clip classification and localisation based
on the recognition of space-time subvolumes. By learning the subvolume latent class vari-
ables with multiple instance learning, more robust action models may be constructed and
used for action localisation in space and time or action clip classification via our proposed
mapping from instance to bag decision scores. The experimental results demonstrate that
the MIL-BoF method achieves comparable performance or improves on the BoF baseline
on the most challenging datasets. In the future, we will focus on generalising the MIL-BoF
approach by learning a mixture of subvolume primitives tailored for each action class, and
incorporating geometric structure by means of pictorial star models.
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