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Abstract

Both weighted spherical harmonics (SPHARM) and spherical wavelets (SW) have
been used for local shape representation of biological structures. In this paper, we
shed light on the underlying connections between weighted SPHARM and SW. A
novel derivation of SW from weighted SPHARM and a detailed formulation of
wavelet transformation for shape representation are presented. Their performances on
local shape representation are evaluated on both macro (amygdala) and micro
(neutrophil cell) scale images. The experimental results show that SW outperforms
the weighted SPHARM for local shape representation of large and complex cell
images, while the weighted SPHARM is a good choice for representing small and
simpler amygdala.

Introduction
ecent advances in imaging techniques have made it possible to acquire high quality 3D
olumetric images of biological structures by using a variety of powerful tools, such as
agnetic resonance imaging and spinning disk confocal microscopy. Although the

cquired images span the spectrum from macro scales (e.g. brain substructures) to micro
cales (e.g. cell images), the challenge of extracting fundamental features of biological
tructures is similar. By comparing images from different individuals or subsequent time
oints, structural changes can be identified, which are important for studying health and
isease. Comparison of biological structures requires effective shape representation, which
s inherently difficult because of their considerable natural variability.

Numerous techniques have been proposed for shape representation, including
andmarks [1], medial representation [2], and spherical harmonics (SPHARM) [3]. Both
he landmarks and the medial representations are discrete representations. A continuum
pproach, SPHARM was first used as a type of parametric surface representation for star-
haped objects [4], and later extended by Brechbuhler et al. [3] to represent other
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arbitrarily shaped but simply connected objects. One of the advantages of SPHARM is that
no landmarks are required for shape representation. Furthermore, the mathematical
representation of the 3D shape with an orthogonal basis enables SPHARM to produce a
phenotypic space of biological structures, and thus provides a basis for reconstructing
evolutionary changes [5]. However, the SPHARM representation suffers from the Gibbs
phenomenon [6], where poor results are obtained for rapidly changing or discontinuous
data [7]. In addition, it has limited scalability, and is slow when applied to large scale 3D
surfaces. Therefore, it has been primarily used to represent small or moderate surfaces that
are relatively smooth [8].

To overcome the drawbacks of SPHARM representation, the weighted SPHARM
method was proposed by Chung et al. [9], which generalizes SPHARM with additional
exponential weights. The exponentially decaying weights substantially reduce the amount
of Gibbs phenomenon [6] and allow faster convergence. Despite the global support of the
basis functions, it has the potential to conduct local analysis by differential weighting of
the SPHARM coefficients [10]. Local shape information can be obtained by evaluating the
representation at each fixed point that gives the smoothed version of the coordinates of
surfaces [7]. Another approach is to use spherical wavelets (SW) that have compact
support at different spatial scales and locations. There have been attempts of using SW for
local shape analysis of brain structure, and promising results were reported [10,11,26]. The
bi-orthogonal spherical wavelet transform [12] that was used suffers from sampling
aliasing. Dramatic changes in the wavelet coefficients can be caused by translating an
image by even one pixel [13]. More recently in [27] the diffusion wavelet was used for
shape representation, which requires training data and a set of landmarks. By using over-
complete SW [14,15], the aliasing problem can be overcome provided there is sufficient
sampling at each scale. Moreover, this approach is more robust and sensitive to group
differences than bi-orthogonal SW in shape analysis [16,17], and requires no landmarks.

Therefore both weighted SPHARM and SW can be employed for local shape
representation. The questions we address here are what is the relationship between them,
how to derive SW from weighted SPHARM, how to formulate derived SW for local shape
representation, and which one is better in terms of performance and efficiency for a typical
biological problem. We first briefly describe the weighted SPHARM method in the next
section. Section 3 sheds light on the underlying connections between weighted SPHARM
and SW. Based on that, we present a novel derivation of SW and a detailed formulation of
wavelet transformation for shape representation in Section 4. In experiments, both the
weighted SPHARM and SW are applied for local shape representation of biological
structures on different scales, and their performances are compared.

2 Weighted SPHARM representation
Given a simple connected 3D object  , spherical parameterization [3] is firstly

conducted to create a continuous, uniform mapping from the object surface to the surface
of a unit sphere  . The result is a bijective mapping between each point p on  and a

pair of spherical coordinates:

( , ) ( ( , ), ( , ), ( , ))
T

x y z       p (1)

where the polar angle [0, ]  is the angle between the positive z-axis (north pole) and

the vector corresponding to p . The azimuthal angle [0, 2 )  is the angle between the
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positive x-axis and the projection of p onto the x-y plane. Then shape representation

techniques such as weighted SPHARM and SW can be employed to describe the object.
Each function of ( , ), ( , ), and ( , )x y z      can be decomposed independently, which is

described for ( , )x   as an example in the following sections.

Weighted SPHARM is mathematically related to isotropic heat diffusion on  [9],
which can be written in the following partial differential equation (PDE) form:

, ( , , 0) ( , )
f

f f t x
t

   



   


(2)

Eq. (2) can be solved by expanding x in SPHARM, which is defined as

2 1 ( )!
( , ) (cos )

4 ( )!

m m im

l l

l l m
Y P e

l m


  



 



(3)

where
2 22

( 1)
( ) (1 ) ( 1)

2 !

mm l m

m l

l l l m

d
P

l d
  








   are the associated Legendre polynomials

with the degree 0l  and order m l . The unique solution of Eq. (2) is given by [9]

( 1)

0

( , ) ( , )
L l

l l t m m

lx l

l m l

x e c Y   
 

 

 (4)

where the bandwidth t controls the amount of smoothing, and m
lxc are the Fourier

coefficients. The implication of Eq. (4) is that the solution decreases exponentially as the
bandwidth t increases and smoothes out high spatial frequency noise much faster than low

frequency noise, which is the basis of many PDE-based image smoothing methods.

The Fourier coefficients m
lxc are estimated by the iterative residual fitting (IRF) method

in a hierarchical fashion [9]. Let
2
( )L  be the space of square integrable functions on the

unit sphere  .
2
( )L  can be decomposed into smaller subspaces as the direct sum of

0, 0n l

n
lSpharm Spharm


(5)

which forms a coarse-to-fine hierarchy. The IRF method estimates the m
lxc in each

subspace { }
m l

l l m l
Spharm span Y


 iteratively by increasing the degree from 0 to L .

3 From weighted SPHARM to SW
Eq. (4) can be rewritten as

0

( ) , ( ) ( )l

L l
t m m

l l

l m l

x p e x Y q Y p


 

   (6)

where ( 1)
l

l l    is the eigenvalue of the Laplace-Beltrami operator


 , and

, ( )
m

l
x Y q  are the Fourier coefficients

m

lx
c . Rearranging the inner product of Eq. (6),

weighted SPHARM is casted as the kernel smoothing below



4 DU et al.: FROM WEIGHTED SPHERICAL HARMONICS TO SPHERICAL WAVELETS

0

( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( )l

L l
t m m L

l l t

l m l

x p e Y p x q Y q d q x q K p q d q


 


   

    (7)

where ( ) sind q d d    , and the symmetric positive kernel
L

t
K is

0 0

( ) ( ) ( ) ( )l l

L l L l
t tL m m m m

t l l l l

l m l l m l

K e Y p Y q e Y p Y q
  

   

    (8)

According to the harmonic addition theorem [18], we have

2 1
( ) ( ) ( )

4

l
m m

l l l

m l

l
Y p Y q P p q




  (9)

where : [ 1,1]
l

P    is the Legendre polynomial of degree l . Substituting ( 1)
l

l l   

and Eq. (9) into Eq. (8), we obtain

( 1)

0

2 1
( )

4

L
L l l t

t l

l

l
K e P p q



 




  (10)

Eq. (10) is the Gauss-Weierstrass kernel [19].

The term
( 1)l l t

e
 

in Eq. (10) can be considered as a discretized version of the

continuously defined function
( 1)

0
( )

tu u
u e

 
 , which is continuous at 0, monotonously

decreasing and satisfies
0
(0) 1  [20]. The dilation of

0
 is given as

0 0
( ) ( ) (2 )

j

j j
u D u u  


  (11)

where
j

D is called dilation operator of j-th level. A system of scale discrete scaling

function can be generated via
0

 and its dilations
j

 as

0

2 1
( ) ( ) ( ), [ 1,1]

4
j j l

l

l
v l P v v








    (12)

The discrete scaling function of Eq. (12) defines a "discrete approximate identity" [20] in
2
( )L  . That is, for any

2
( )F L  ,

lim 0
j

j

F F


   (13)

where  designate the convolution operator. The convolution
j

F  provides us with a

sequence of progressively "sharper" versions of F at different scales, and forms scale

spaces
j

V that satisfy

2

0 1
( )

j j
V V V L


      (14)

Based on the definition of scale discrete scaling functions of Eq. (12), scale discrete
wavelets on the sphere can be introduced as the difference of two successive resolution
levels

 1 1

0

2 1
( ) ( ) ( ) ( ) ( ) ( )

4
j j j j j l

l

l
v v v l l P v 





 




      (15)

Eq. (15) can be considered as a Difference-of-Gaussian (DoG) wavelet. The scale index j

associated to the dyadic value 2
j

serves as a measure for decreasing frequency
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localization of the scale discrete wavelet kernel. The more levels of wavelet are added, the
more accurate representation of the function F can be obtained.

This produces detail spaces
j

W that contain the information needed to go from an

approximation at resolution j to an approximation at resolution j+1, written as

1j j j
V V W


  . Besides representing a function by its level-j coarse and level-j detail

components, the latter can be broken down to level-(j+1) coarse and detail, and so on. Any

function
2
( )F L  can now be represented in the form

0 0 1 1J J
V V W W W


     (16)

Comparing Eq. (16) to Eq. (5), it is easy to see that the idea behind the IRF method is
closely related to the wavelet transform, i.e. representing the function in a coarse-to-fine
hierarchy.

4 SW representation
The SW derived in Section 3 exploit the geometry of the sphere that encode in the system
of spherical harmonics. Their analyzing functions are poorly localized, and in fact they do
not really resemble wavelets [21]. The wavelet dilation is explicitly defined in harmonic
space on  , which lacks some important properties [22]. First, the corresponding
properties of a radial and conformal diffeomorphism is lost, as the harmonic dilation does
not act on points. Second, the evolution in real space of the localization and directionality
properties of functions on the sphere through harmonic dilation is not known analytically
due to its explicit definition in harmonic space. In the following sections, we propose a
new way to construct over-complete SW based on the group theoretic approach [21], and
use the theoretical results from the work of [17] to build self-invertible filter banks, which
are employed for decomposing and reconstructing images.

4.1 Constructing over-complete SW

In the group theoretic approach, over-complete wavelets on the sphere are built as inverse
stereographic projections of wavelets on the plane. The stereographic projection is the

unique radial conformal diffeomorphism mapping the sphere  onto the plane
2

 [21],
and SW are constructed by projecting admissible Euclidean planar wavelets on to the
sphere by

2

2
( , ) (1 tan ) ( , )

2
r


    


 


(17)

where ( ) 2 tan( / 2)r   is the polar coordinate in the plane tangent to the sphere at the

north pole. The term
2

1 tan ( / 2) is to ensure the unitarity of the projection.

Different from Eq. (15), we construct the spherical DoG wavelet by projecting its
Euclidean planar formula on to the sphere. DoG is a rotation invariant wavelet, and has the
following form on the plane

2 2 2 2 2 2
1 2( ) / 2 ( ) / 2

2 2

1 2

1 1 1
( , )

2

x y x y
DoG x y e e

 

  

   
 

 
 
 

(18)
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Its inverse stereographic projection defines the DoG wavelet on the sphere as
2 2

2 2
1 2

2 2
tan tan

2 22

2 2

1 2

1 1 1
( , ) (1 tan ( / 2))

2
DoG e e

 

 
  

  

 

  
 
  
 

(19)

which is independent of the azimuthal angle  and is said to be zonal or axisymmetric.

4.2 Constructing self-invertible filter banks

It is desirable to employ identical filters for both analysis and synthesis in the wavelet
domain, which follows the intuitive notion that a convolution coefficient corresponds to
the contribution of the corresponding filter to the reconstructed signal [17]. Otherwise, the
effects of nonlinear processing of wavelet coefficients could propagate to spatial locations
and frequencies other than those which were used to compute the coefficients [13]. We
constructed self-invertible filter banks according to the work of [17].

The nth analysis filters
n

h are the stereographic dilation [21] of Eq. (19)

1

( , ) ( , )
n

n

n i a

i

h b D DoG   



 
 
 
 (20)

where
i

b are the amplitude scaling parameters that control the tradeoff between self-

invertibility and norm-preserving dilation. The stereographic dilation operator
naD on

2
( )G L  , for a continuous dilation factor

*
a R


 , is defined as

1/ 2 1
[ ]( , ) ( , ) (2 arctan( tan ), )

2
a

D G a G
a


     (21)

where the normalization factor
1/ 2

( , )a  is uniquely determined by the requirement that

the dilation of functions in
2
( )L  must be a unitary operator, i.e. preserve the scalar

product, and specifically the norm of functions. For self-invertible filter banks, the

synthesis filter
n

h is the same as the analysis filters
n

h .

4.3 Spherical wavelet transform

A wavelet basis on the sphere may now be constructed by rotations of
n

h . The rotation

operator R is parameterized in terms of the three Euler angles ( , , and   ). The three

angles specify an element of the rotation group (3)SO . The effects of rotation on the

SPHARM coefficients of a square-integrable function on  is expressible in terms of

Wigner-D functions ( , , )
mm

l
D   



[23]. The rotation transforms each SPHARM of degree

l into a linear combination of SPHARM of the same degree but possibly different orders

[17]. That is

[ ( , , ) ] ( , , )
l

m mm m

l l l

m l

R G D G     
 



  (22)
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The corresponding wavelet family ( , , ) ( , )
n

R h     provides an over-complete set of

functions in
2
( )L  . A spherical continuous wavelet transform (SCWT) of ( , )x   can be

given in terms of a wavelet basis by the projection on to each wavelet basis function by
spherical convolution

( , , ) [ ( , , ) ] ( , ) ( , )
n n

W R h x d         


    (23)

where  denotes complex conjugation. It is worth to note that the spherical harmonic
coefficients are zero for orders other than 0 due to the axisymmetry of DoG wavelets. The
fast spherical convolution [24] can be used to compute Eq. (23).

To produce reconstructed surface components, the synthesis filters are used to project a

function in
2
( (3))L SO onto

2
( )L  by inverse convolution

(3)

( , ) [ ( , , ) ]( , ) ( , , )ˆ
n n n

SO

R h W dx             (24)

where the integration is over the Euler angles sind d d d     .

The reconstructed surface is obtained by summing over the response of all filter pairs

(3)

( , ) [ ( , , ) ]( , ) ( , , )ˆ
n n

SO
n

R h W dx             (25)

The SCWT is defined continuously in above formulation. In practice, effective analysis

requires discretization. We sample the output of the continuous convolution ( , , )
n

W   

and the surface reconstruction of Eq. (25) is approximated by finite weighted summations.
For axisymmetric analysis/synthesis filter banks of a finite SPHARM degree, latitude-
longitude sampling guarantees that the filter bank has the same frequency response under
the continuous and discrete convolution [17].

5 Experimental results
We use weighted SPHARM and over-complete SW for shape representation of biological
structures, including both macro and micro scale images. The macro scale images are
amygdala images published in [7], which consist of manual amygdala segmentations of
MRI data of 10 control and 12 autistic subjects. The micro scale images are ten stacks of
neutrophil cell images, which are labeled with cell mask orange dye to stain the plasma
membrane, and are imaged by spinning disk confocal microscopy with Z stacking. A semi-
automatic method was employed for cell segmentation, which was further processed to
ensure that interior holes were filled and isolated islands removed. Thus, a binary
segmentation volume is created whose voxel surface has a spherical topology. The typical
amygdala image has 2302 vertices and 4600 faces, which is much smaller than the size of a
cell image with 24538 vertices and 49072 faces. Moreover, cell images have more
complex and finer structures than amygdala images.

Both shape representation techniques require continuous spherical parameterization to
map from the surface mesh to a unit sphere. The spherical parameterization method
presented by Brechbühler et al. (1995) is applied, and its implementation in the shape
analysis toolbox of SPHARM-PDM [25] was used, where PDM stands for Point
Distribution Models.
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The root mean-squared error (RMSE) was calculated for quantitatively comparing the
results provided by different representation methods. The RMSE is computed by

2

1
( ( ) ( ))

N

i iiRMSE
N





 p p 

(26)

where  indicates a true object surface and  its representation, which is evaluated at

N sampling points
1

{ }
N

i i 
p . The average errors and computational times for amygdala and

neutrophil cell images are reported separately for each method in Tables 1-4.

The weighted SPHARM code was obtained from the author's website. The bandwidth t
in Eq. (4) that controls the dispersion of the kernel is set to 0.001. Another issue that needs
to be addressed is the degree. It is important to find the optimal degree where the goodness
of representation and the computational cost are balanced. Chung et al. [9] presented a
statistical framework for automatically determining the optimal degree that does not
depend on the size of object. They reported that the optimal degree is 42 for bandwidth
t=0.001, which is used for weighted SPHARM representations. We also present results
with degree 10, 20, and 30. For the reason of comparison, we additionally report the result
with setting the bandwidth to t=0.0001 and the optimal degree to 78 [9]. As the degree
increases over 78, the RMSE flattens out, and the decrease in error is no longer significant.

SW decompose the image into component signals at different scales. Each kernel at
different scale acts as a bandpass filter. Since the DoG wavelet of Eq. (19) is
axisymmetric, the spherical harmonic coefficients are zero for orders other than 0. We
choose the first four hundred spherical harmonics of order 0 as the set of basis functions,

and define the set of scales to be {2 }, 1, 0, , 5
n

a n


    with n=0 corresponding to the

undilated template. The spherical harmonic coefficients are precomputed, and stored on a

hard drive. The amplitude scaling parameters
i

b in Eq. (20) are set to be the same for all

scales, which results in the frequency response of filters having comparable amplitude at

different scales [17]. The sigma values in Eq. (19) are set as
1

0.625  and
2

1  , which

makes it a good substitute for the Laplacian of Gaussian.

Fig. 1 shows shape representations of an example surface of left amygdala via both
weighted SPHARM and SW. It can be seen that 20 degree weighted SPHARM and level 1
and 3 SW representations are not good enough to describe the local shape. The weighted
SPHARM of 42 and 78 degrees and level 5 and 7 SW representations are visually very
close to the original surface of Fig. 1(a). That is confirmed by the RMSE values listed in
Tables 1 and 2. The 42 degree weighted SPHARM representation has the same RMSE
value of 0.16 as the level 5 SW representation. In terms of computation time, weighted
SPHARM (1.3 s) is much faster than SW (29.13 s) for representing small size amygdala.
For a simple (no complex and fine structures) biological object with small size, weighted
SPHARM should be a better choice that can achieve considerably good results efficiently.
However, further increasing the degree of weighted SPHARM has less effect than
increasing the level of SW. Weighted SPHARM representation with 78 degree can only
achieve a RMSE value of 0.07, which is higher than the level 6 SW representation with a
RMSE value of 0.04.

The better performance of SW is demonstrated when representing cell images as shown
in Fig. 2. Comparing the shape representation with level 7 SW to the original surface, they
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(a) (b) (c) (d)

T
t
S

T
a

T
t
S

representation.
able 1. The average RMSE values and
he average running times of weighted
Degrees 10 20 30 42 78

RMSE 0.41 0.33 0.26 0.16 0.07

Time (s) 0.1 0.32 0.66 1.3 5.46

Degrees 10 20 30 42 78

RMSE 0.81 0.53 0.44 0.39 0.31

Time (s) 0.92 3.19 7.58 15.57 57.51

R

T

PHARM for amygdala representation. r

PHARM for cell representation. r

SPHARM representation of (a). (e-h) Level

(a) (b)

(e) (f)
able 2. The average RMSE values and the
verage running times of SW for amygdala
Levels 1 2 3 4 5 6 7

RMSE 7.57 0.53 0.39 0.3 0.16 0.04 0.02

Time (s)10.47 15.08 19.78 24.41 29.13 33.75 38.4

epresentation.
able 3. The average RMSE values and
he average running times of weighted
Table 4. The average RMSE values and the
average running times of SW for cell
(e) (f) (g) (h)

Fig. 1 (a) An example surface of left amygdala. (b-d) Its corresponding 20, 42, and 78
degrees weighted SPHARM representation. (e-h) Its level 1, 3, 5, and 7 SW
Levels 1 2 3 4 5 6 7

MSE 5.08 1.25 0.72 0.48 0.37 0.16 0.08

ime (s) 10.86 15.54 20.25 24.91 29.56 34.26 38.92

epresentation.

(c) (d)

(g) (h)
Fig. 2 (a) An example surface of a neutrophil cell. (b-d) 20, 42, and 78 degrees weighted

1, 3, 5, and 7 SW representation of (a).
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are visually almost undistinguishable. The RMSE values of SW with levels 6 and 7 are
0.16 and 0.08, respectively, which are better than 0.31 for the weighted SPHARM
representation with degree 78 (see Tables 3 and 4). The limitation of weighted SPHARM
is that it fixes the bandwidth for all the components appearing on the surface. It has a
limited ability to detect subtle changes. By using multiscale bandwidths, SW are able to
represent very fine structures. The total running time is higher for degree 78 weighted
SPHARM (57.51 s) than level 7 SW (38.92 s). Comparing Table 2 to 4, it is interesting to
note that the object size has negligible influence on the running time of SW, as it increased
only from 38.4 s to 38.92 s using level 7 SW for representing amygdala and cell images,
respectively. In contrast, the total running time of degree 78 weighted SPHARM increased
dramatically, from 5.46 s to 57.51 s. Therefore, SW should be a better choice for
representing large and complex biological structures.

6 Conclusions
There is a close relationship between weighted SPHARM and SW. From the weighted
SPHARM formulation, DoG SW can be derived. The idea behind the IRF method used for
weighted SPHARM coefficients estimation is similar to the wavelet transform, i.e.
representing the function in a coarse-to-fine hierarchy. Both the reformulated SW and
weighted SPHARM can be used for local shape representation of biological structures. For
more complex and larger objects, SW should be the better choice which can achieve better
results more efficiently. For small size objects without fine structures, weighted SPHARM
yield a representation of similar quality as with SW, but are faster to compute.
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