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Local Shape Representation in 3D: from Weighted Spherical Harmonics to Spherical Wavelets
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Numerous techniques have been proposed for shape representation,
including landmarks [1], medial representation [2], spherical harmonics
(SPHARM) [3], weighted SPHARM [4], and spherical wavelets (SW)
[5]. Among them, both weighted SPHARM and SW have been used for
local shape representation of biological structures. Questions we address
in this paper are what is the relationship between them, how to derive
SW from weighted SPHARM, how to formulate the derived SW for
local shape representation, and which one is better in terms of
performance and efficiency for a typical biological problem.

The coordinate x of a point ( , )p   on a unit sphere  can be

represented by weighted SPHARM as the following kernel smoothing
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where
m

l
Y is SPHARM with the degree 0l  and order m l . Eq.

(2) is essentially the Gauss-Weierstrass kernel [6].
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where
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D is called dilation operator of j-th level. A system of scale

discrete scaling function can be generated via
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 and its dilations
j

 as
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The discrete scaling function of Eq. (4) defines a "discrete approximate

identity" [7] in
2
( )L  . Based on Eq. (4), scale discrete wavelets on the

sphere can be introduced as the difference of two successive resolution

levels
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which can be considered as a difference-of-Gaussian (DoG) wavelet.
As discussed in the paper, the SW derived above are poorly

localized, and in fact they do not really resemble wavelets. We propose
a new way to construct over-complete SW based on the group theoretic
approach [8], and use the theoretical results from the work of [9] to
build self-invertible filter banks, which are employed for decomposing
and reconstructing images.

We construct the spherical DoG wavelet by projecting its Euclidean
planar formula on to the sphere
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The term
2

1 tan ( / 2) is to ensure the unitarity of the projection.

The nth analysis filters
n

h of the self-invertible filter banks are the

stereographic dilation [8] of Eq. (6):
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where
i

b are the amplitude scaling parameters that control the tradeoff

between self-invertibility and norm-preserving dilation, and
naD is the

stereographic dilation operator.

A spherical continuous wavelet transform of ( , )x   can be given
in terms of a wavelet basis by the projection on to each wavelet basis
function by spherical convolution
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where ( , , )R    is the rotation operator. To produce reconstructed

surface components, the synthesis filters are used to project a function in
2
( (3))L SO onto

2
( )L  by inverse convolution
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Figure 1: Shape representations of example surfaces of a left amygdala
(a) and a neutrophil cell (d) via both weighted SPHARM with 78 degree
((b) and (e)) and SW with level 7 ((c) and (d)), repectively.
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