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Abstract

Robust category-level object recognition is currently a major goal for the computer
vision community. Intra-class and pose variations, as well as, background clutter and
partial occlusions are some of the main difficulties to achieve this goal. Contextual in-
formation, in the form of object co-occurrences and spatial constraints, has been suc-
cessfully applied to improve object recognition performance, however, previous work
considers only fixed contextual relations that do not depend of the type of scene under
inspection. In this work, we present a method that learns adaptive conditional relation-
ships that depend on the type of scene being analyzed. In particular, we propose a model
based on a conditional mixture of trees that is able to capture contextual relationships
among objects using global information about a scene. Our experiments show that the
adaptive specialization of contextual relationships improves object recognition accuracy
outperforming previous state-of-the-art approaches.

1 Introduction
Lately, the synergistic combination of computer vision and machine learning techniques
have been successfully applied to the problem of automatic visual recognition [20] [9] [7]
[8]. In particular, contextual information has emerged as an attractive option to boost the
performance of single object detectors [10][2][5].

Context based methods can be divided into two groups: global and local context meth-
ods [10]. Regarding global or holistic context methods, most works exploit whole scene
statistics to perform recognition. In [19], Ulrich and Nourbakhsh introduce color histograms
as the holistic representation of an image that is used by a K-nearest neighbors scheme to
classify scenes. In [17], Torralba proposes an image representation based on global features
that represent dimensions in a space that they call spatial envelope. In [1], Chang et al. use
low-level global features that are used to estimate a belief or confidence function over scene
labels.

Regarding local context techniques, contextual information is derived from specific blocks
or localized areas around object positions. Sinha and Torralba [16] improve face detection
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Figure 1: An example of the results of our method with respect to a state-of-the-art model
[2]. We show the top six most confident detections for each model using the same underlying
single object detector [8]. In the case of 1(b), the model uses fixed contextual relations that
do not detect the car object and produce a wrong detection of a mountain object. In contrast,
our model 1(c) uses global scene information to adaptively select a suitable component of a
mixture of trees that embeds particular contextual relations that provide a correct detection
of the car object and do not detect a phantom mountain object.

using local contextual regions. Torralba et al. [18] introduce a Boosting approach in com-
bination with a Conditional Random Field (CRF) to recognize objects. They apply their
method to recognize objects and structures in office and street scenes. Shotton et al. [15]
combine layouts of textures and context to recognize objects. They use a CRF to learn a
model of objects and a boosting algorithm to combine the texture information and the object
model. Galleguillos et al. [10] present a critical review of different contextual cues and
machine learning models commonly used to improve object categorization. Rabinovich et
al. [14] show that textual data from the web is a useful source to estimate co-ocurrence
between objects. Choi et al. [2] presents an efficient scheme to model inter-object relations
using a tree-structured Bayesian network. Recently, [5] shows a technique that is able to
model contextual cueing, spatial co-ocurrence, and inhibitory intra-class constraints among
objects using a max-margin approach. In all these cases, contextual relations among objects
are fixed and do not depend of the type of scene being analyzed.

We believe that using an adaptive scheme to model contextual relations among objects
can boost the performance of current object recognition techniques. We can illustrate this
idea by the following example. Consider the case of the contextual relation between the
presence of a person and a dog objects. Under a park scene, person and dog objects co-occur
frequently, but in an office scene, they hardly co-occur, therefore modeling such relation with
a fixed contextual constraint limits the flexibility of the model to fit real data. Moreover, in
terms of a probabilistic graphical model (PGM) representation for object relations, such as
[2], the relevance of the information provided by each type of object can change dramatically
for different types of scenes. For example, in an office scene a computer monitor is com-
monly a highly informative object, therefore under a suitable PGM representation it should
have strongly related children objects. In contrast, in situations like a living room scene, a
monitor is usually not very informative, therefore under a suitable PGM representation its
related children structure is not very relevant.

In the previous cases, the flexibility of a mixture model able to provide adaptive contex-
tual relations among objects can be a useful tool to boost object recognition performance.
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Consequently, in this work, we present a method that learns adaptive conditional relation-
ships among objects according to the scene information. In particular, we achieve this by
introducing a PGM based on a conditional mixture of trees [11]. Next, we provide first
background information relevant to our model. Afterwards, we describe the details of our
approach. Finally, we present the results of our experiments showing the advantages of our
approach.

2 Hierarchical context
In this section, we summarize the work by Choi et al. [2] that is the baseline algorithm
considered in our work. The model in [2] is composed of a prior and a measurement model.
Next we provide details about prior and measurement models. Note that we use bi to refer
to a specific object class i, while we use B to refer to a generic object class.

2.1 Prior Model
The prior model uses a binary tree structured PGM to represent co-ocurrence and spatial
relationships among object categories. Nodes in this tree are given by variables indicating
object presence, as well as, its location and scale (see [2] for details). Specifically:

1. Object presence: bi ∈ {0,1} corresponds to the presence of an object of class i.

2. Object location and scale: Li corresponds to the location and scale of object in-
stance bi. L = {Li, . . . ,LN} resumes all object classes. L is modelled as dependant of
the presence of objects b: p(L|b) = p(Lroot |broot)∏i p(Li|Lpa(i),bi,bpa(i)), where Li is
the median of the location and scale for all instances of object i and is composed by
(Li

y, logLi
z). Li

y is the median of vertical positions for object i and Li
z is the median

of scales for object i. Medians are computed using all training images. The use of a
logarithm for scales and the omission of horizontal positions is justified in [2].

2.2 Measurement Model
The measurement model predicts the presence of an object category bi in an image by using
global gist features and outputs of object detectors. Figure 2(a) shows the PGM that relates
the variables considered in the measurement model. Specifically:

1. Correct detections: cik ∈ {0,1} represents the k-th detection of instances of object
category i, being 1 if the detection is a true positive and 0 otherwise. Correct detections
depend on object presence, where p(cik = 1|bi = 1) corresponds to the frequency of
correct detections in the training set and p(cik = 1|bi = 0) = 0.

2. Classifier scores: sik ∈ℜ represents classifiers scores, which according to Figure 1 de-
pends on correct detections cik. Using Bayes rule, p(sik|cik) = p(cik|sik)p(sik)/p(cik).
Here a logistic regression is used to model p(cik|sik).

3. Detection window location: wik = (Lik
y , logLik

z ) represents the location of a detection
window, where Lik

y and Lik
z are vertical location and scale of the window correspond-

ing to the k-th detection of an instance of object category i. Location is modeled
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as a Gaussian distribution and it depends on cik and the median location Li of in-
stances of object class i. If a window is a correct detection then wik is modeled as
p(wik|cik = 1,Li) = Gaussian(wik;Li,Λi), where Λi is the covariance around the pre-
dicted location. If a window is a false positive then wik does not depend on Li and it is
modeled with a uniform distribution.

4. Gist: Gist features gL [17] are used to related global image features to object presence
by estimating (gL|bi. To deal with the high dimensionality of the gist vector gL, a
logistic regression is used to estimate p(bi|g), then likelihoods p(gL|bi) are estimated
indirectly using p(g|bi) = p(bi|g)p(g)/p(bi).

Following the notation in [2], from here on we use variables without subindexes to
denote the set of variables related to individual object class detections in a image.
For example, = b{b1, . . . ,bN} denotes the binary values of all variables related to the
detection of the D possible object classes. In the same way, W resumes all candidate
detection windows variables wik in a given image.

3 Our model

As mentioned earlier, an important limitation of the method by Choi et al. [2] is that it
assumes a fixed contextual relationship among objects. In this work, we avoid this limitation
by incorporating in the model adaptive contextual relationships between objects that depend
on a estimation of the current scene type. Our main intuition is that contextual object-to-
object co-occurrences strongly depend on the underlying scene, as shown in the person and
dog example mentioned before. In particular, we propose to modify the fixed single tree
co-occurrence model by Choi et al., using a model based on a mixture of trees. This mixture
of trees incorporates scene information to adaptively represent different possible contextual
relations between objects. In terms of the original PGM considered [2], our main modifi-
cation is the incorporation of a latent variable representing the underlying scene type. This
latent variable depends on the output of a Gist feature [17]. Figure 2(b) shows the resulting
modified PGM after adding the new latent variable. Also global features xG are added to the
PGM, as observation to infer the scene type.

Our mixture of trees context model is built by a conditional mixture of tree-structured
Bayesian networks, each of which is an expert in some partition of the set of images. These
networks have a weight that depends on the global scene information (given by the Gist fea-
ture). The model can be seen as a mixture of experts where the gate function is given by
a function of the global representation, and each expert function is given by an individual
Bayesian networks. We stress that our main contribution is the joint modeling of the depen-
dence between the ensemble of trees and a global representation of the image data. Next,
we provide details of the proposed conditional mixture of trees model and how we conduct
estimation and inference with this model.

3.1 Conditional mixture of trees

In order to incorporate global scene information in our model, we model object presence as
dependent on scene type. In our current implementation, we infer scene type using a Gist
feature vector xG. In this sense, in our PGM xG = gL, however, other global features can
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Figure 2: Modification of contextual objects relationships: (a) The model by Choi et al. (b)
Proposed model that incorporates global scene information as a root element that influences
object-to-object relationships.

be used to estimate scene type, therefore we consider xG and gL as separate variables in the
PGM shown in Figure 2(b).

For a training set of N images, we can construct N instance-label pairs (xG,b), where, as
stated before, b∈{0,1}D represents the potential presence of the D possible object categories
in a given image. Our goal is to use instances (xG,b) to include in our model different types
of contextual relations between object classes. We achieve this goal by introducing latent
variable z which simplifies the analysis of the model. We refer to this latent variable as
the context variable. We assume that there are K possible values for z, i.e., we assume the
existence of K contexts for object classes. This is similar to a mixture of experts model
with the exception that in our case b is conditionally independent of xG given z. The context
variable is assumed as a winner-take-all variable, i.e., each object class detection occurs
under a specific contextual scenario.

Considering K contexts and using a Gaussian Kernel for the weighting of experts, we
can model the conditional density p(b|xG) [21] as:

p(b|xG) =
K

∑
i=1

p(b,zi|xG) =
K

∑
i=1

p(b|zi,xG) p(zi|xG) =
K

∑
i=1

p(b|zi) p(zi|xG) (1)

Here, we have K contexts represented by zi, with i = {1, ...,K}, where each context has
its own class-conditional probability function.

We specify the two components of the mixture model given by Equation 1 as follows:

• Context gate: given by p(zi|xG), represents the influence of each local context. It
represents an estimate of the likelihood of selecting each of the K experts for the input
xG. The gate function has K components, one for each expert.

• Tree experts: given by p(b|zi) represents the class-conditional local models. It rep-
resents an estimate of the probability of appearances b given the expert zi for input
xG. There are K context functions. In this case, we use a Bayesian Network model
following Choi et al [2].

The proposed model is similar to the mixture of trees model presented by Meila and
Jordan [11]. A mixture of trees model represents the distribution of a convex sum of K tree
components over a random variable x as: Q(x) = ∑

K
k=1 λkT k(x) with λk ≥ 0 and ∑

K
k=1 λk = 1.

Tree distributions T k(x) are the mixture components and coefficients λk are the mixture
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proportions. This model can be viewed as containing a latent variable z that with probability
λk selects mixture component k. Therefore, conditioned on the value of z, the distribution of
mixture Q is represented by a single tree. An advantage of this model is its flexibility because
the trees may have different structures and parameters. Nonetheless, the main difference with
our work is that while in [11] they assume the weight of each component as fixed, we model
these weights as variable. In particular, in the proposed model these weights depends on the
global representation of a given image using the context gates.

Regarding context gate function, we use normalized Gaussian Kernels [21]. This func-
tion can be interpreted as a simple mixture model. In this case, p(zi|x) = αiPi(x)

∑ j α jPj(x)
, where

each Pi is a Gaussian probability density functions with weights αi, ∑ j α j = 1 and αi ≥ 0.
In the case of the tree expert function, we use a Bayesian Network function similar

to Meila and Jordan [11]. Following their work, we parameterize a tree with a graph
G = (V ;E), where V is the vertex set and E is the set of edges. Assuming a set of K
trees, Vi represents the vertex set of tree i, where i ∈ {1, . . . ,K}. In the case of our adap-
tive contextual model, the probability distribution of variable b conditioned on the context
variable zi, p(b|zi), is represented by T i(b). Each tree models this component as T i(b) =
∏v∈V i Tv|pa(v)(bv|bpa(v)), where Tv|pa(v)(bv|bpa(v)) is an arbitrary conditional distribution. Vari-
able pa(v) represents the parents of variable v inside the tree.

In order to find optimal parameter values for tree experts and the gate function, we use the
Expectation Maximization (EM) algorithm [4]. To obtain a one-pass solution for the gating
function, instead of the conditional log-likelihood for the complete data, we use the joint log-
likelihood [21]. Assuming that the posterior probabilities of context gates or responsabilities
Rin for each expert i and training instance n are known, we can apply the EM algorithm over
the expected log-likelihood:

〈Lc〉=
N

∑
n=1

K

∑
i=1

Rin log( p(bn|zi)Pi(xn)αi) (2)

The expectation step of EM is given by the calculation of the posterior probability of
context gate i, which is given by:

Rin = p(zi|xn,bn) =
p(bn|zi) p(zi|xn)

∑
K
j=1 p(bn|z j) p(z j|xn)

(3)

The maximization step of EM is given by the maximization with respect to each param-
eter. We can observe two decoupled components in the expected log-likelihood:

Eexpert =
N

∑
n=1

K

∑
i=1

Rin
[
log T i(bn)

]
, Egate =

N

∑
n=1

K

∑
i=1

Rin [log(αiPi(xn))] (4)

In the case of the tree expert component, we must minimize the negative cross-entropy
between R and T . Following the work of Meila and Jordan [11], this problem is solved
using a weighted version of the Chow-Liu algorithm. This component requires K runs of
the Chow-Liu algorithm, where Rin is the normalized posterior probability obtained in the
E-step.
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In order to find the parameters of the gating function, αi, µi and σi (being µi and σi the
parameters of the Gaussian representation), we use Equation 2, obtaining:

αi =
1
N

N

∑
n=1

Rin, µi =
∑

N
n=1 Rin xn

∑
N
n=1 Rin

, σi =
1
d

∑
N
n=1 Rin ‖xn−µi‖2

∑
N
n=1 Rin

(5)

Algorithm 1 Conditional Mixture of Context Trees
while Not convergence do

Compute responsabilities R according to Equation 3
for i = 1→ K do

Estimate α ,µ and σ according to Equation 5 and T with a weighted Chow Liu algo-
rithm according to [11].

end for
end while

The operation of the EM algorithm for a conditional mixture of trees is summarized in
Algorithm 1. We initialize the gates using a variant of the K-means algorithm that clusters
variables b over the training set using Hamming distance. The resulting conditional mixture
of context model follows the intuition that general context is naturally divided into many
component contexts, thus, we can make inference on each tree and then combine the outputs
using the gating function.

3.2 Inference
Inference is straightforward, as we separate each tree in its own partition. Similarly to [2], we
make inference using message passing algorithms for each tree (p(b,c,L/g,W,s,z)) [13].
Afterwards, similarly to [11], we obtain the final score by combining the scores of each
component with its respective parameters.

b̂, ĉ, L̂ = argmaxb,c,L∑
z

p(z)∗ p(b,c,L/g,W,s,z) (6)

Following Choi et al. [2], we use an iterative procedure. First, we make inference
without considering the locations (b̂0, ĉ0 ∝ p(b,c|g,s)), then we infer the locations (L̂ ∝

argmaxL p(L|b̂0, ĉ0,W )), and finally we infer the object presence (b̂, ĉ ∝ p(b,c|s,g, L̂,W ))
considering the previous inferred location. The last step is equivalent to sampling from a
binary tree with node and edge potentials modified by p(L̂,W/b,c).

4 Experiments
In this section, we perform an empirical evaluation of the proposed approach considering
two real datasets: (i) OUTDOOR dataset created by Oliva and Torralba [12], and (ii) SUN09
dataset created by Choi [2]. OUTDOOR dataset has 2600 images and includes 8 outdoor
scene categories, such as coast, mountain, forest, etc. We randomly divide the dataset into
two sets of approximately equal size, one for training and one for testing. Similarly to
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Choi et al. [2], we prune object categories by considering only those that have at least 3
true detections in the training set. As a result, for OUTDOOR dataset we have 21 object
categories with equal-sized training and test sets. In the case of SUN09 dataset, as in [2],
we prune the dataset considering only object categories with at least 4 true detections in the
training dataset. As a result, for SUN09 dataset we have 111 object categories, 4367 training
images, and 4317 test images.

In general, in both datasets object detections are highly challenging, including a variety
of poses, scales, rotations, and scene types. We use the object detector proposed by Felzen-
szwalb et al. [8], which is based on the mixture of multi-scale deformable parts model and a
latent SVM approach. We use the same object detector models for both datasets. In average,
this detector outputs approximately 5 detections per category in each image. In both datasets,
for each image we consider the top 10 detections. We use the average precision-recall (APR)
[3] as a performance metric for our model. This metric corresponds to the area under the
precision-recall curve.

Table 1 shows APR for both datasets: OUTDOOR and SUN09. We show the resulting
APR for: i) Direct object detections provided by the underlying object class detector [8]
(Object detector), ii) Choi et al. [2] method based on hierarchical context (Single Tree), iii)
Our proposed method using different number of trees (MixTree-X, where X is the number of
used trees). Relative improvement in APR with respect to Choi et al. is shown in parenthesis.

Method OUTDOOR SUN09
Object detector 14.02 (-6.5%) 6.82 (-13.2%)
Single Tree 15.00 (0.0%) 7.87 (0.0%)
MixTree-2 15.07 (0.5%) 7.98 (1.5%)
MixTree-3 14.87 (-0.9%) 8.09 (2.9%)
MixTree-4 15.12 (0.8%) 8.06 (2.5%)
MixTree-5 15.25 (1.7%) 8.03 (2.2%)
MixTree-6 15.83 (5.5%) 8.31 (5.7%)
MixTree-7 14.84 (-1.1%) 7.88 (0.3%)

Table 1: APR for OUTDOOR and SUN09 databases provided by the tested methods. Rela-
tive improvement with respect to Choi et al. is shown in parenthesis.

Analyzing Table 1, in OUTDOOR database we note that performance improves as the
number of trees grows up to 6. After that, APR decays. In general, results improve the
performance of Choi et al. [2]. Considering the best number of trees in this dataset (six),
relative improvement is 5.5%. In the case of SUN09 database, the improvement with respect
to Choi et al. in terms of APR is 5.7% for the best number of trees (also six). It is important
to note that in this case adding additional trees does not necessarily improve performance. In
terms of individual classes, we found for the case of six trees that in OUTDOOR and SUN09
dataset, the APR increases for 10 and 53 object classes and decreases for 6 and 34 classes
objects, respectively.

Figure 3 shows example detections of the top six most confident detectors from our
model and Choi et al. [2]. For example in Figure 3(b) the adaptive scheme correctly detect
a sea object that is not detected by the single tree model in Figure 3(a). In Figure 3(d) a car
object is recovered and a streetlight object is discarded in relation to Figure 3(c).

Figure 4 presents examples of resulting trees for OUTDOOR database. The value over
each edge represents the strength of dependency relation between each pair of object classes.
Following [2], these dependencies are calculated using the magnitude of the mutual infor-
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mation between each pair of object classes, while the sign is positive if p(bi = 1,b j = 1 >
p(bi = 1)p(b j = 1). This scheme is used in [2]. Tree A shows relationships mainly for
mountain and rural highways scenes, while tree B shows relationships associated to street
scenes. As an example of variable relationships between objects, we observe the correlation
between the objects road and sign. Both objects are connected in both trees A and B, how-
ever, in tree B the dependence of both variables (0.71) is considerably higher than in tree A
(0.01). This reflects the fact that these two objects relationship are more important in streets
scenes than in other cases.

Figure 5 shows in a grid the dependences between objects for the single tree model and
for two trees of a mixture of six trees. Considering space restrictions, we only show the
values related to the eleven most frequent objects. For example, we can evaluate an image
of rural highway scene. If we inspect the tree of the single tree model 5(a), we see that the
objects tree and road are weakly correlated. On contrast, in tree A of the conditional mixture
tree model 5(b), both objects appear as strongly correlated.

Tree
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SKY[0.95]
SKY[0.76]
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SPOTLIGHT[0.19]

SPOTLIGHT[0.15]
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Figure 3: Some detections considering a single tree model [2] and a conditional mixture
of trees. Conditional mixture of trees usually provides better detections than a single tree
model.
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 0.709 

 0.045 

 0.068 

 0.332 

 0.002 

 0.001 

 0.236 

 0.707 

 0.151 
 0.208  −0.035 

 0.123 

 −0.116  0.343 

 0.001 

 0.467 

 −0.668 

 −0.462 

 0.213 

 1 

 0.405 

AWNING

BALCONY

BUILDING

CAR

DOOR

FENCE
FIELD

GROUND

MOUNTAIN

PATH

PLANT

ROAD

ROCK

ROCKS

SEA
SIGN

SKY
STONES

STREETLIGHT

TREE

VAN

WINDOW

(b) Tree B: related to street scenes.

Figure 4: Examples of component trees for a mixture of six trees in the OUTDOOR dataset.
Positive and negative correlations are indicated respectively with blue and red lines.

5 Conclusions
In this work, we propose an adaptive context model that uses a conditional mixture of trees to
overcome relevant limitations of a fixed tree context model. Our experiments using standard
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(b) Tree A of Mixture of 6 Trees
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(c) Tree B of Mixture of 6 Trees

Figure 5: Dependence of the top 11 more frequent objects. Figure 5(a) shows the relation-
ships for a single tree. Figures 5(b) and 5(c) show two relationships in a mixture of 6 trees.

object datasets indicate that the proposed model improves object recognition performance
with respect to a single tree model, as it considers underlying scene information that influ-
ences object-to-object relationships. As future work, we plan to enhance our model using
more powerful features for the gating function. Finally, we also plan to include adaptive
policies to control the execution of object classifiers, similar to the method proposed in [6].
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