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Solar phenomena such as active regions, flares, coronal mass ejections
(CMEs), and solar wind, all of which contribute to geoeffective events,
collectively referred to as space weather, are not well understood [1], yet
are of critical importance due to modern society’s reliance on technolo-
gies that can be disrupted by these events. Understanding such activity
requires knowledge of the electron density of the solar corona (or solar
atmosphere), but such knowledge is hard to come by for local, short-lived
events such as CMEs.

Direct imaging of CME electron density via tomographic reconstruc-
tion is difficult because a maximum of three unique observations of any
given event are available. Such a regime requires a reconstruction al-
gorithm that is robust to sparse data. Mumford-Shah type models have
previously been proposed for CME reconstruction [2] but have not been
successful due, in part, to the complex topology of CME structures.

We present a method for reconstruction from sparse data that, simi-
larly, uses an auxiliary segmentation to constrain the density, but we rep-
resent the segmentation using the phase field level set framework, thereby
eliminating important topological limitations and allowing for smooth en-
forcement of two different regularization regimes, while retaining robust-
ness. We use a fast variational algorithm to compute MAP estimates,
and compare our results to classical regularized tomography for synthetic
CME-like images.

Model We seek to infer the electron density f in a local section of the
solar corona Ω and a segmentation, represented by a phase field φ classi-
fying a subset R⊂Ω as part of a CME, given a set of coronagraphs Y and
prior knowledge K, (e.g. parameter values). We compute the MAP esti-
mate ( f̂ , φ̂) from − lnP( f ,φ |Y,K) = E(Y | f ,K)+E( f |φ ,K)+E(φ |K):
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The first line of (1) defines E(Y | f ,K), representing noisy tomographic
measurements.

The third line defines the segmentation energy, E(φ |K). The phase
field φ represents the region R = {x ∈Ω : φ(x)> 0}; c1, c2, and c3 are
free parameters. The last two terms are a double well potential: for |c3|<
c2, local minima occur at φ =±1. Coupled with the smoothing effect of
the first term, the potential ensures that, away from the region boundary
and for fixed R, φ takes the values 1 in R and −1 in Ω \ R. Near the
boundary, there is a smooth transition across an interface zone of width
4
√

c1/c2. The effective energy controlling R is then a linear combination
of the length (area) of the boundary and the area (volume) of the interior
of R for 2D (3D) regions [3].

The second line defines E( f |φ ,K), which couples the density and
the phase field. In the first component, φ± = (1± φ)/2 act as pseudo-
indicator functions for the CME and background regions, thus defining
distinct Tikhonov regularization parameters, λ±, for the interior and ex-
terior of R. The second term favours large inward pointing ∇ f on the
boundary, because CMEs generally have sharply higher densities than the
background. Thus, like [2], we model the background as smoother than
the CME, and with a very different density, but unlike [2], the phase field
defines a smooth change in the regularization parameter over the interface.
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Figure 1: Comparison of joint segmentation-reconstruction with
Tikhonov regularized reconstructions for CME image. (a) Joint
segmentation-reconstruction and (b) Tikhonov regularized reconstruction
with λ = λ− for 32 equispaced observation angles and 32 projections per
angle. (c) and (d) same, for 3 equispaced observation angles.

Algorithm Traditionally, energies such as (1) are optimized by split-
step gradient descent methods relying on explicit finite differencing to
solve the associated PDEs. However, the small time step required for sta-
bility leads to slow convergence and implicit methods allowing larger time
steps are impractical due to increased computational complexity from the
nonlinearity in the phase field potential. We resolve these issues by mini-
mizing in both f and φ simultaneously using finite element discretization
and a trust-region-based variation on Newton’s method, the Levenberg-
Marquardt method. In this approach, the length of the descent step is
dependent upon the minimization algorithm and the local shape of the
objective function, and is not explicitly constrained by the discretization.

Results We compare our results to those obtained using Tikhonov reg-
ularization (Fig. 1). We see that, even for the limited angle reconstruc-
tions, the joint segmentation-tomographic reconstructions have definition
in the CME region that is not present in either of the Tikhonov regular-
ized reconstructions. Our experiments show that our method is signifi-
cantly more effective than Tikhonov regularized tomography alone, and
resolves issues with CME topology and continuity of the density that af-
fected previous work. Our model and optimization method easily extend
to the full 3D CME reconstruction problem, though further work on pa-
rameter estimation is necessary to render the method automatic.
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