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Abstract

In this paper we propose new binary pattern features for use in the problem of 3D
facial action unit (AU) detection. Two representations of 3D facial geometries are em-
ployed, the depth map and the Azimuthal Projection Distance Image (APDI). To these the
traditional Local Binary Pattern is applied, along with Local Phase Quantisation, Gabor
filters and Monogenic filters, followed by the binary pattern feature extraction method.
Feature vectors are formed for each feature type through concatenation of histograms
formed from the resulting binary numbers. Feature selection is then performed using a
two-stage GentleBoost approach. Finally, we apply Support Vector Machines as clas-
sifiers for detection of each AU. This system is tested in two ways. First we perform
10-fold cross-validation on the Bosphorus database, and then we perform cross-database
testing by training on this database and then testing on apex frames from the D3DFACS
database, achieving promising results in both.

1 Introduction
Recognition of facial expressions is a challenging problem, as the face is capable of complex
motions, and the range of possible expressions is extremely wide. For this reason, detection
of facial action units (AUs) from the Facial Action Coding System has become a widely
studied area of research. AUs are the building blocks of expressions, and are finite in number,
thus allowing a comprehensive detection system to be produced.

3D facial geometry data is an relatively new area of expression recognition research. Data
of this kind allow a greater amount of information to be captured, including out-of-plane
movement which 2D cannot record, whilst also removing the problems of illumination and
pose inherent to 2D data. 3D data has previously been employed for full facial expression
recognition (e.g. [17]) and also facial AU detection (e.g. [20]). The majority of research
conducted on static 3D facial meshes so far has employed features based on facial points
(e.g. [9, 21, 24]), patches on the mesh (e.g. [8, 11]) or morphable models (e.g. [12, 32]).
Alternatively, 2D representations such as the depth map and curvature images have been
exploited (e.g. [2, 20]). Further details of the methods employed can be found in [18]. This
work aims to explore alternative feature types suitable for analysis of 3D facial expressions
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Figure 1: An overview of our proposed system.

by exploiting the popular binary pattern approach which has been successfully applied to the
2D problem.

Local Binary Patterns (LBPs) [13] is a technique that has been widely applied to the prob-
lems of facial expression recognition [22] and face recognition [1]. They are a useful feature
type as they simply and quickly encode the shape of the image at each pixel by computing
binary numbers that reflect the local neighbourhood. Variants on LBPs have also been pro-
posed to improve on the performance of the basic feature: Local Gradient Orientation Binary
Patterns (LGOBPs) [10], Local Phase Quantisers (LPQ)[14], Local Gabor Binary Patterns
(LGBPs) [30], and Histogram of Monogenic Binary Patterns (HMBPs) [29]. LBPs, LPQs
and LGBPs have also been extended to the dynamic problem in the form of LBP-TOP [31],
LPQ-TOP [7] and V-LGBPs [28]. The traditional LBP descriptor has also been applied to
the depth map of a 3D facial mesh in 3DLBPs [6] and the Multi-resolution Extended Lo-
cal Binary Pattern (MELBPs) [5]. More recently we have proposed Local Normal Binary
Patterns (LNBPs) [16] to utilise the facial mesh normals for 3D AU detection.

In this paper, we explore further ways of exploiting the 3D facial geometry information
through the use of binary pattern methods. In order to apply these algorithms, we transform
the 3D facial geometry into two 2D representations that contain the geometry information.
Firstly, we employ the depth map representation with a variety of feature types, phase quan-
tisers, Gabor and Monogenic filters, in order to produce new feature types. Secondly, we
utilise a new 2D representation, the Azimuthal Projection Distance Image, which represents
the direction of the normals in the facial geometry thus capturing different geometry in-
formation. In summary we propose seven new feature types: (1) Local Azimuthal Binary
Patterns (LABPs) (2) Local Depth Phase Quantisers (LDPQs) (3) Local Azimuthal Phase
Quantisers (LAPQs) (4) Local Depth Gabor Binary Patterns (LDGBPs) (5) Local Azimuthal
Gabor Binary Patterns (LAGBPs) (6) Local Depth Monogenic Binary Patterns (LDMBPs)
(7) Local Azimuthal Monogenic Binary Patterns (LAMBPs). Each of these is employed with
two-stage GentleBoost feature selection and Support Vector Machine (SVM) classification
in order to test their effectiveness as compared to the original 3DLBP feature and our LNBP
feature type, including conducting the first cross-database testing carried out on 3D AUs. An
overview of our system can be seen in Fig. 1.

2 Facial Geometry Representations
We examine the use of two different 2D representations of the 3D facial geometry: the widely
used depth map representation, and the Azimuthal Projection Distance Image (APDI) which
measures the Euclidean distance of the facial mesh normals at each point.

The first representation, the depth map, is widely used in 3D facial analysis [2, 5, 26] as
it is a very simple 2D representation. In this work, a regular grid is defined with suitable x
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Figure 2: 2D representations of the facial mesh for subject bs043 from the Bosphorus
database performing AU20 (a) The original facial mesh (b) The interpolated depth map (b)
The Azimuthal Projection Distance Image.

and y ranges, and Delaunay triangulation is used to interpolate the height of the facial mesh
points in the x-y plane within this range so that a regular grid of z values are generated which
forms the depth map. An example of this can be seen in Fig. 2(b) for the facial mesh in Fig.
2(a).

As an alternative, we outline a second representation, the Azimuthal Projection Distance
Image (APDI). The aim of this method is to allow accurate comparison of the directions
of the normals in the local neighbourhood. The Azimuthal Equidistant Projection (AEP) is
able to project normals onto points in a Euclidean space according to the direction. It has
previously been employed to capture the local variations in facial shape [23], and can be
applied to the normals, in order to project each 3D direction into the position in a Euclidean
2D plane. So for a regular grid of normals, defined as n(i, j) = (ui, j,vi, j,wi, j), the AEP point
p(i, j) = (xi, j,yi, j) in this plane is defined as:

xi, j = k′cosθ(i, j)sin
[
φ(i, j)− φ̂(i, j)

]
yi, j = k′

(
cosθ̂(i, j)sinφ(i, j)− sinθ̂(i, j)cosθ(i, j)cos

[
φ(i, j)− φ̂(i, j)

]) (1)

where θ(i, j) = π

2 − arcsin(wi, j) is the elevation angle measured from the z-axis, φ(i, j) =
arctan vi, j

ui, j
is the azimuth angle, θ̂(i, j) and φ̂(i, j) are the elevation and azimuth of the mean

normal n̂(i, j) at the point p, k′ = c
sin(c) where c is defined such that

cos(c) = sinθ̂(i, j)sinθ(i, j)+ cosθ̂(i, j)cosθ(i, j)cos
[
φ(i, j)− φ̂(i, j)

]
(2)

However, for our purposes, it is necessary to be able to directly compare the projection
coordinates of neighbouring points, and so for this reason θ̂ and φ̂ at every point are set
to be π

2 and 0 respectively, so that the distance calculated is always compared to a normal
n̂ = (1,0,0) which was chosen as a reference to create an image suitable for further analysis.
This assumption makes cos(c) = sinθ(i, j) and allows the projection to be simplified to:

xi, j = k′cosθ(i, j)sinφ(i, j) yi, j = k′cosθ(i, j)cosφ(i, j) (3)

The above formulation then allows distances between the normals in Euclidean space to
be directly found, and this simplification also reduces the complexity of the feature extraction
process. In order to employ the projection in the binary pattern framework, the coordinates
are used to find an absolute distance from the origin di, j =

√
x2

i, j + y2
i, j, and these values form

the Azimuthal Projection Distance Image (APDI) for the facial mesh. An example of this
calculated for the facial mesh seen in Fig. 2(a) can be seen in Fig. 2(c).
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Figure 3: Examples of images produced by feature descriptors for subject bs043 performing
AU20. M - magnitude, P - phase, O - orientation. (a) 3DLBP image (b) LABP image (c)-
(d) Gabor depth M/P images (e)-(f) Gabor APDI images (g) LDPQ image (h) LAPQ image
(i)-(j) LDGBP M/P images (k)-(l) LAGBP images (m)-(o) Monogenic depth M/P/O images
(p)-(r) Monogenic APDI images (s)-(u) LDMBP M/P/O images (v)-(x) LAMBP images.

3 Binary Pattern Features
In this section we explain the proposed set of new binary pattern features for analysis of 3D
facial geometry information. First, the original 3DLBP feature is described, and its extension
using the APDI. Then we describe the application of Local Phase Quantisers, and Gabor and
Monogenic binary patterns, to 3D facial meshes, both utilising the depth map and APDI.

3.1 Local Binary Patterns
3D Local Binary Patterns (3DLBPs) were proposed for use in facial expression recognition
of 3D meshes in [6]. They exploit the depth map representation of the 3D information,
interpolated onto a regular grid, in order to encode the local shape around each point in the
mesh. In general, for an image I, a neighbourhood is defined as a circle around each pixel
with a radius r and number of points P spaced at regular angles around the circle. The central
pixel value is then used as a threshold to assign binary bits to the pixels in the neighbourhood,
thus producing a binary number for that pixel:

LBP(xc,yc) =
P

∑
p=0

2ps(I(xp,yp)− I(xc,yc)) where s(v) =
{

1 i f v ≥ 0
0 otherwise (4)
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Here we propose a new feature based on this idea, the Local Azimuthal Binary Pattern
(LABP). This feature employs the APDI rather than the depth map to calculate the binary
pattern in the neighbourhood of each point. In this way, the shape of the mesh is encoded via
the direction of the normals at each point, allowing more subtle information to be captured
about the structure of the mesh. This method is similar to gradient-based methods employed
in 2D image processing [10]. Examples of the 3DLBP and LABP images resulting from the
examples in Figs. 2(b) and 2(c) can be seen in Figs. 3(a) and 3(b) respectively.

3.2 Local Phase Quantisers
Local Phase Quantisers (LPQs) can be used to extract the local phase information, which
contains important directional features (e.g. edges) [15] useful in analysis of facial deforma-
tions, from the image using the Short-Term Fourier Transform (STFT). They are designed
to be particularly invariant to blurring as this phase information is unaffected by an assumed
symmetric blur pattern [14].

The standard LPQ feature is extracted as follows. For a point p = (x,y) with MxM
neighbourhood Np, the STFT is defined as:

F(u,p) = ∑
k∈Np

f (p−k)e− j2πpT k = wT
u fp (5)

where wu is the basis vector of the 2D DFT at frequency u and fp is the vector form of the
neighbourhood Np. In addition, in our implementation a Gaussian window is also applied
to the basis functions. Four frequency pairs are employed, ([0,0]T , [0,a]T , [a,a]T , [a,−a]T ),
and these allow the calculation of two binary digits each in order to form the eight-digit
binary number for the point p in the following way:

q(p) = [s(Re{F(u1,p)}), ...,s(Re{F(u4,p)}),s(Im{F(u1,p)}), ...,s(Im{F(u4,p)})] (6)

where s(v) is as defined in the previous section.
Here we extend this idea by application of the LPQ feature to our two representations,

the depth map and APDI, in order to produce two operators, Local Depth Phase Quantisers
(LDPQs) and Local Azimuthal Phase Quantisers (LAPQs). Examples of the resulting LDPQ
and LAPQ images can be seen in Figs. 3(g) and 3(h) respectively.

3.3 Gabor Binary Patterns
Gabor filters have been widely used in 2D facial expression recognition [25, 27], and also
applied to 3D analysis [20], as they are well suited to capturing the structural information,
namely edge features, in an image in a way that is similar to the human visual system. In
this work we employ log Gabor filters of various scales and orientations.

The transfer function of the filters used consists of a radial log Gabor filter multiplied by
an angular Gaussian component:

G(u)ν ,θ = exp
(
−(log(ν |u|))2

2(logσ)2

)
exp

(
−(6 u−θ)2

2σφ

)
(7)

where ν and θ are the scale and orientation of the filter respectively, and σ and σφ define the
spread of the filter in the radial and angular directions respectively.

We multiply this to the Fourier transform of our two images, the depth map and APDI,
at four different scales and four orientations, and then the inverse transform is taken to find
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the resulting Gabor coefficients, g(x,y) = F−1(GF(I)). The magnitude and phase of these
are then taken as new images, gM(x,y) = |g(x,y)| and gP(x,y) = 6 g(x,y). The binary pattern
algorithm is then applied to each of the resulting magnitude images in order to encode the
local structural information further, as was done in the 2D LGBP case [30]. This forms the
magnitude half of each of our new features, Local Depth Gabor Binary Patterns (LDGBPs)
and Local Azimuthal Binary Patterns (LAGBPs).

In addition, here we also encode the phase information in each image using a variant
on the LBP method due to the circular nature of phase. In this case the difference is taken
between the phase at the central point and those of the neighbouring points and this difference
is compared to a threshold value, ψ , in order to assign a zero or one for each neighbouring
point. For these experiments this threshold value was set to be π

4 . For example, the LDGBPP
operator, applied to the phase of the depth Gabor features, is calculated as:

LDGBPP(xc,yc) =
P−1

∑
p=0

2ps(ψ −|gP(xc,yc)−gP(xp,yp)|) (8)

where gP(xc,yc) is the phase image at the central point, gP(xp,yp) is the phase image at the
pth point in the neighbourhood and P is the number of points in the neighbourhood. The
LAGBPP operator is similarly formed, but applied to the phase of the APDI Gabor features.
Examples of the Gabor images for the depth map and APDI, and the corresponding LDGBP
and LAGBP images, can be seen in Figs. 3(c)-3(d), 3(e)-3(f), 3(i)-3(j), and 3(k)-3(l) respec-
tively.

3.4 Monogenic Binary Patterns
The monogenic signal is an alternative approach to the use of Gabor filters. It allows a
2D image to be analysed in terms of magnitude, phase and orientation, thus giving a 2D
representation of the structural information in the data. Therefore, it is no longer necessary
to apply filters at multiple orientations, as with Gabor filters, because features in multiple
directions are captured simultaneously. However, multiple scales are still useful for capturing
different levels of structure in the image. The monogenic representation is a 2D version of
the analytic signal, which exploits the Riesz transform in order to achieve the same properties
as the 1D version [4].

In practise, the three components of the monogenic signal, magnitude, mM , phase, mP,
and orientation, mO, can be calculated through the use of two orthogonal monogenic fil-
ters with transfer functions H1(u) = ju1

|u| and H2(u) = ju2
|u| , and radial log Gabor filters with

varying scales:

mM(x,y) =
√

g′(x,y)2 +h′1(x,y)2 +h′2(x,y)2

mP(x,y) = arctan
(

h′2(x,y)
h′1(x,y)

)
mO(x,y) = arctan

(
g′(x,y)√
h′21 +h′22

) (9)

where h′i = F−1(HiG′F(I)), I is the image, F is the 2D Fourier transform, and G′(u)ν =
exp(−(log(ν |u|))2/2(logσ)2) is the transfer function of the radial component of the full
log Gabor filter outlined in the previous section and g′ = F−1(G′F(I)).

This signal is calculated for both the depth map and APDI, in order to produce the Local
Depth Monogenic Binary Pattern (LDMBP) and Local Azimuthal Monogenic Binary Pattern
(LAMBP) respectively. The magnitude, phase and orientation images are then encoded using
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the binary pattern algorithm and phase variation described in equation 8. This contrasts with
the original 2D implementation of the HMBP [29], as in that work only the magnitude and
phase were encoded, so that the second dimension of structural information was lost. In
addition, the phase variant of the LBP employed here encodes the shape purely based on
differences between phase, not similar quadrants. Examples of the Monogenic images for
the depth map and APDI, and the corresponding LDMBP and LAMBP images, can be seen
in Figs. 3(m)-3(o), 3(p)-3(r), 3(s)-3(u), and 3(v)-3(x) respectively.

4 Methodology
In order to extract features using the previously outlined feature types, the 3D facial meshes
are first aligned and used to create the depth maps and APDIs. Alignment is achieved via
six landmarks in the face, given in the Bosphorus database and manually selected in the
D3DFACS database, by applying a calculated rotation, translation and stretch in the x and y
directions to ensure correspondence. Once this is done the depth map and APDI can be found
from interpolated grids of the depth and normals, and feature extraction is then performed
using each of the feature types with 8 set as the value of both the radius and number of
neighbourhood points for each of the operators. Feature vectors are created for each of
the above descriptors through the use of histograms. First, the x-y plane of the mesh is
divided into 10x10 equally-sized square blocks, and for each of these a histogram is formed
from the calculated binary numbers. These histograms are then concatenated into one large
feature vector. 60 bins were used to produce the feature descriptors. In the case of LDGBPs,
LAGBPs, LDMBPs and LAMBPs, multiple images are used, for magnitude and phase, and
for every scale and orientation, and each of these generates a separate histogram. These are
formed into one feature descriptor via further histogram concatenation. This process can be
seen in Fig. 4.

Feature selection is performed in order to reduce the dimensionality of the feature vectors
before classification. GentleBoost, a modified version of the AdaBoost algorithm which is
more stable than the original version, is used for this purpose, with two stages to the feature
selection. The first stage consists of choosing regions in the image which give the most
discriminative information about the examples for the AU. At each stage the error rate of
the features within the regions when classified by a weak classifier are averaged, and the
region with the lowest chosen. Then all features within the region are used to update the
examples weightings at that stage. This step allowed features in parts of the face where the
AU is not active to be discarded quickly before the main feature selection step. The second
stage is feature-wise GentleBoost selection to choose particular features within these regions.
To avoid overfitting, our strategy is to run this stage of the selection algorithm repeatedly,
removing the previously chosen features at each stage, until the number of features selected

Figure 4: Construction of the feature vector by concatenation of histograms from each block
in the image, and then concatenation of different image histograms, in this case the magni-
tude, phase and orientation images for once scale of the LAMBPs.



8 SANDBACH et al.: BINARY PATTERN ANALYSIS FOR 3D FACIAL AU DETECTION

exceeds the number of examples in the training set, or until fewer than 5 features are being
chosen by the algorithm.

SVM classifiers are then trained for detection of each AU. These classifiers employ the
histogram intersection kernel, and parameter optimisation is first performed using 5-fold
cross-validation on a separate validation set which is taken to be one third of the data avail-
able for training. The SVM classifiers are then trained on the remaining training set.

5 Experimental Results

Experiments were conducted to compare the performance of the different feature types on
two 3D AU detection problems to both the 3DLBP feature type and also to our previously
proposed Local Normal Binary Patterns (LNBPs) feature type [16]. Here we only use the
LNBPOA operator for testing as this generally outperformed the LNBPTA operator in our pre-
vious work. The first test consisted of 10-fold cross-validation performed on the Bosphorus
database [19], which consists of static images of 105 subjects performing up to 24 AUs. Sec-
ondly, the D3DFACS database [3] was employed in order to perform cross-database testing,
which is the first time tests of these kind have been performed on 3D AUs. This database
consists of 10 subjects performing a wide range of single and combinations of AUs. The
AUs that are present in both databases were identified and classifiers were trained on the
Bosphorus database for each of these. Testing was then conducted on an apex frame from
each sequence in the D3DFACS database that contained one or more of the AUs. This latter
test poses a difficult problem for the system, as the D3DFACS contains examples of many
combinations of AUs, whereas the Bosphorus database only contains examples of single
AUs being performed.

5.1 Cross-Validation Testing

The ROC Area under the Curve (AuC) is used to evaluate the performance of the system with
the different feature types. Results from Bosphorus database cross-validation testing can be
seen on the left side of Table 1. The leftmost column shows the results for 3DLBPs, while
the other seven columns display the results our new feature types. As can be seen, on av-
erage LDPQs, LDGBPs, LAGBPs, LDMBPs, and LAMBPs all outperform 3DLBPs, while
LAPQs and LABPs achieve the same performance on average. However, the benefits of the
latter feature type can be seen by looking at individual AU results such as AUs 1, 12, and
17, plus 15 and 20 where LABPs significantly outperform 3DLBPs, and also do better than
LNBPs which suggests that the APDI image is a better method for comparison of normals
than the LNBP approach. LAPQs only achieves a benefit for a couple of AUs, 17 and 20,
showing a significant improvement in the latter. The highest result was achieved when em-
ploying the LDGBP feature type, with AuC of 97.2. This compares favourably with results
attained on this same database in [20], in which a maximum AuC of 96.3 was achieved when
using multiple 2D representations of 3D facial geometries with Gabor features. Several other
feature types also performed very well, LDPQs, LAGBPs, LDMBPs and LAMBPs. They
all demonstrate a significant increase on average over 3DLBPs and in one or more AUs. In
addition, the azimuthal features outperform their depth counterparts in a number of cases:
LAGBPs for AUs 16, 20 and 34, and LAMBPs in 15, 20. However, generally the depth and
azimuthal features match each other for performance. This suggests that some of the benefits
of the APDI seen in the LABP results are lost in the more complex features.
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Cross-Validation Results Cross-Database Results
AU B NB AB DPQ APQ DGB AGB DMB AMB B NB AB DPQ APQ DGB AGB DMB AMB
1 92.2 96.4 95.1 95.6 93.4 95.7 94.2 94.0 93.5 86.0 91.8 81.3 88.3 83.3 85.4 86.2 90.1 88.0
2 98.0 97.9 98.5 98.5 98.7 99.0 99.0 98.7 98.9 94.2 97.2 94.6 95.6 92.9 98.8 87.2 99.2 91.6
4 96.3 96.1 96.9 96.4 96.3 97.9 97.6 97.5 97.5 85.9 88.6 80.4 86.4 79.4 90.0 80.5 86.3 89.5
43 99.6 99.2 99.8 99.8 99.7 99.9 100.0 99.9 100.0 99.0 97.3 95.7 98.6 91.2 99.1 99.4 98.5 97.4
44 93.9 88.8 91.4 95.7 92.4 95.7 95.3 94.6 93.7 97.8 97.8 97.0 96.0 99.1 98.3 97.2 96.5 92.9
9 97.8 96.8 97.7 97.6 97.6 98.6 97.6 98.1 97.3 93.9 95.8 91.6 95.5 87.4 96.1 82.7 95.5 85.4
10 97.8 96.9 96.1 96.5 96.5 97.6 97.3 97.2 97.3 83.1 90.0 88.8 90.2 88.2 88.9 85.8 89.1 88.7
12 94.9 96.4 96.5 96.4 96.0 96.7 96.5 97.1 95.6 90.4 93.9 92.6 91.5 88.2 94.3 94.4 94.8 94.2
12L 96.9 98.9 95.8 97.9 95.9 98.2 97.6 98.2 97.1 N N N N N N N N N
12R 97.6 99.4 97.4 97.6 97.1 98.3 97.0 97.9 96.1 N N N N N N N N N
14 92.4 92.9 92.1 94.6 92.4 95.7 93.9 95.9 94.6 91.4 90.5 72.7 91.1 85.5 92.2 89.3 89.3 89.2
15 85.8 90.1 91.7 90.3 86.6 92.7 90.1 89.9 92.4 72.1 75.7 86.0 91.9 81.6 85.9 71.4 89.8 79.5
16 96.4 93.5 94.4 95.2 95.4 96.7 98.1 96.9 94.2 92.2 82.5 77.2 94.1 71.9 90.9 47.6 92.3 68.7
17 93.4 95.5 94.6 96.6 95.1 96.9 96.1 96.7 95.5 84.1 83.5 64.7 87.9 65.2 83.8 70.4 85.2 68.0
18 97.0 96.2 97.3 97.5 95.5 98.2 97.8 98.1 97.7 93.4 91.7 86.2 98.3 86.8 96.9 84.6 98.5 83.3
20 89.9 92.9 96.3 94.9 94.8 95.1 96.3 94.1 95.7 83.0 88.6 83.1 90.7 89.0 88.7 74.0 85.0 73.7
22 99.3 98.0 98.5 99.2 98.0 99.6 99.1 99.7 98.6 95.1 95.5 89.9 96.2 82.2 97.4 90.1 97.6 89.8
23 94.6 90.8 94.2 96.4 95.2 96.4 94.3 95.9 93.5 51.9 48.9 46.6 49.6 49.2 50.1 45.4 49.1 47.7
24 88.8 89.1 86.2 92.0 87.6 92.8 91.3 93.8 90.3 76.0 72.8 71.4 79.8 68.4 85.8 72.4 74.9 71.2
25 94.8 92.5 92.6 94.0 89.7 95.4 92.3 95.8 95.2 74.7 70.8 61.9 68.3 38.0 78.0 47.0 79.5 38.3
26 93.8 93.4 94.5 95.7 94.0 96.6 97.0 97.0 95.0 71.3 76.4 63.4 73.5 67.5 75.0 74.4 76.4 72.3
27 99.5 97.9 99.1 99.5 99.3 99.7 98.6 99.8 99.1 94.6 93.0 92.9 96.3 87.3 94.4 90.5 92.7 92.4
28 97.8 97.7 97.9 98.8 98.2 99.1 99.0 99.3 99.2 98.9 99.9 99.4 99.5 91.4 99.9 98.8 100.0 99.6
34 99.0 97.0 98.4 99.7 98.9 99.3 99.7 99.1 99.0 97.3 95.2 99.7 97.2 95.3 98.1 99.1 98.1 76.7
µ 95.3 95.2 95.5 96.5 95.2 97.2 96.5 96.9 96.1 86.6 87.1 82.6 88.9 80.4 89.4 80.3 89.0 80.8
σ 0.7 0.8 0.6 0.5 0.7 0.4 0.5 0.5 0.6

Table 1: ROC AuC Results. Left: Cross-validation testing on the Bosphorus database. Right:
Cross-database testing trained on the Bosphorus database and tested on apex frames from the
D3DFACS database. B: 3DLBPs, NB: LNBPs, AB: LABPs, DPQ: LDPQs, APQ: LAPQs,
DGB: LDGBPs, AGB: LAGBPs, DMB: LDMBPs, AMB: LAMBPs. µ: Mean AuC score
across AUs, σ : Standard deviation of mean AuC score across folds. N: No examples.

5.2 Cross-Database Testing

The results from cross-database testing on the D3DFACS database can be seen on the right
side of Table 1. The first thing of note about these results is that again it is LDGBPs that
achieve the highest result, of 89.4. However, for the majority of AUs it does not give the
highest result, as it is outperformed by either LDMBPs or LDPQs, which both also achieve
high average scores. It obvious from these results that the azimuthal binary pattern features
all do far worse than their depth counterparts when tested on this database. LABPs actually
achieve the highest result of the four, and does better than 3DLBPs on a number of AUs,
noticeably 10 and 15. However, it demonstrates the same performance or lower on a larger
number of AUs. This includes several for which some benefit was seen over 3DLBPs in
the cross-validation test, such as 1 and 20. LABPs also does worse than LNBPs in this test,
suggesting that it does not generalise as well to the new database. This could be due to
the fact that the LABP feature type will be much more sensitive to differences between the
smoothness in the facial meshes, both across the training database, and between the training
and testing databases. This problem is also reflected in the LAGBP and LAMBP results,
where the features fail to achieve similar or better results than their depth counterparts on the
majority of AUs. This along with the cross-validation results suggests that these complex
features are even more sensitive to the mesh smoothness differences.

6 Conclusions
In this paper we have proposed a series of new feature types suitable for AU detection in 3D
facial meshes. These are based on two representations of the 3D information: the previously
employed depth map and the APDI. Experimental testing was conducted first on a single
database using cross-validation, and then cross-database testing using a second database.
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The results show that while the majority of the features outperformed the standard 3DLBP on
the single database, the APDI-based features struggled to generalise to a new database of ex-
amples. This could be because of the differences in smoothness between the two databases,
and future work will need to focus on improving how robust these features are to changes of
this nature.
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