Binary Pattern Analysis for 3D Facial Action Unit Detection
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Recognition of facial expressions is a challenging problem, as the
face is capable of complex motions, and the range of possible expres-
sions is extremely wide. For this reason, detection of facial action units
(AUs) from the Facial Action Coding System, a comprehensive system
for coding facial muscle movements, has become a widely studied area of
research. The use of 3D facial geometry data and extracted 3D features
for expression recognition has so far not been heavily studied. Images
and videos of this kind allow a greater amount of information to be cap-
tured (2D and 3D), including out-of-plane movement which 2D cannot
record, whilst also removing the problems of illumination and pose inher-
ent to 2D data. For this reason some work has begun to employ 3D facial
geometry data for facial expression recognition or facial AU detection.

We tackle this problem with the introduction of a variety of new bi-
nary pattern features that are all based on the traditional Local Binary
Pattern (LBP) [6] or Local Phase Quantiser (LPQ) [5] features. In order
to do this, we employ two 2D representations of the 3D facial geometry
information. Firstly we utilise the depth map, that has been widely used in
3D facial analysis, and secondly we define the Azimuthal Projection Dis-
tance Image (APDI), which captures the comparative directional informa-
tion of the normals in the mesh as a 2D representation. The Azimuthal
Equidistant Projection (AEP) is able to project normals onto positions in
a Euclidean 2D plane. For our purposes we alter the projection to create
the APDI, which allows direct comparison of the projection coordinates
of neighbouring points.
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Figure 1: 2D representations of the facial mesh for subject AU20 (a) Orig-
inal facial mesh (b) Depth map (b) Azimuthal Projection Distance Image

We have a regular grid of normals, defined as n(i, j) = (u; j, vi j, Wi ;)
to be projected relative to a set of mean normals fi(i, j) calculated at each
point. We set the elevation and azimuth of the mean normals, 8 and ¢,
to be & and O respectively at every point. This then allows calculation of
the distances of the normals as compared to the mean fi = (1,0,0) which
is chosen as a reference to create an image suitable for further analysis.
This assumption allows the AEP projection to be simplified to:
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for a point p(i, j) = (xi,j,¥i,j), where 6 is the elevation angle, and ¢ is the
azimuthal angle, of the normal at this point. The above formulation allows
comparison between normal distances in Euclidean space, and this sim-
plification also reduces the complexity of the feature extraction process.
In order to employ this in the binary pattern framework, the coordinates
are used to find an absolute distance from the origin d; j = , /x% j + y% j
and these values form the APDI for the facial mesh. Examples of the
depth map and APDI, calculated for the facial mesh seen in Fig. 1(a), are
shown in Figs. 1(b) and 1(c) respectively.

Each representation is then exploited for use with binary pattern al-
gorithms in order to form feature types suitable for robust AU detection.
Firstly, the traditional Local Binary Pattern (LBP) algorithm, which as-
signs a binary pattern to each point in an image by thresholding the neigh-
bouring points on the central value, was applied directly to each repre-
sentation. This forms the previously proposed 3DLBP [7], for use as a
baseline test, and the new Local Azimuthal Binary Pattern (LABP) re-
spectively. Next we utilise other methods that have been employed for
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Figure 2: An overview of our proposed system.

2D feature extraction: LPQs, Local Gabor Binary Patterns (LGBPs) [4],
and Histogram of Monogenic Binary Patterns (HMBPs) [3]. In the latter
two cases, we extend the methods to apply them to the magnitude, phase,
and, in the case of the Monogenic signal, orientation. In total this formed
seven new features: (1) Local Azimuthal Binary Patterns (LABPs) (2) Lo-
cal Depth Phase Quantisers (LDPQs) (3) Local Azimuthal Phase Quantis-
ers (LAPQs) (4) Local Depth Gabor Binary Patterns (LDGBPs) (5) Local
Azimuthal Gabor Binary Patterns (LAGBPs) (6) Local Depth Monogenic
Binary Patterns (LDMBPs) (7) Local Azimuthal Monogenic Binary Pat-
terns (LAMBPs). The performance of these new features is assessed as
compared to the original 3DLBPs.

Feature vectors are created for each of the above descriptors through
the use of histograms. First, the x-y plane of the mesh is divided into
10x10 equally-sized square blocks, and for each of these a histogram is
formed from the calculated binary numbers. These histograms are then
concatenated into one large feature vector. Feature selection is performed
in order to reduce the dimensionality of the feature vectors before classi-
fication. The GentleBoost algorithm was used for this purpose, with two
stages to the feature selection: first selection of regions, and then par-
ticular features. Support Vector Machines (SVMs) were then trained for
detection of each AU, with parameter optimisation carried out using 5-
fold cross-validation, and these were used for testing of all sequences. An
overview of our system can be seen in Fig. 2.

Experimental testing was conducted in two ways: 10-fold cross- val-
idation on the Bosphorus database [2], and cross-database testing with
training on this database, and testing carried out on the D3DFACS database
[1]. The results achieved show a definite improvement with all of the new
features over the traditional 3DLBP, with a maximum cross-validation
ROC AuC of 97.2 when using LDGBPs. This improvement was also
seen with the depth features on the cross-database testing, though the Az-
imuth results in this test suggested that these features are less robust when
there are large variations in smoothness of the mesh between training and
testing data.
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