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Abstract
Multi-object tracking requires locating the targets as well as labeling their identities.

Inferring identities of the targets from their appearances is a challenge when the avail-
ability and the reliability of the observation process do vary along the time and space.

The purpose of this paper is to assign identities to those appearance measurements
using a graph-based formalism. Each node of the graph corresponds to a tracklet, which
is defined to be a sequence of positions that very likely correspond to the same physi-
cal target. Tracklets are pre-computed, e.g. using [2], and our work investigates how to
assign them identities, knowing the reference appearance of each target. Initially, each
node is assigned a probability distribution over the set of possible identities, based on the
observed appearance features. Afterwards, belief propagation is considered to infer the
identities of more ambiguous nodes from those of less ambiguous nodes, by exploiting
the graph constraints and the measures of similarities between the nodes. In contrast
to the standard belief propagation, which treats the nodes in an arbitrary order, the pro-
posed method uses a priority-based belief propagation, in which less ambiguous nodes
are scheduled to transmit their messages first.

Validation is performed on a real-life basketball dataset. The proposed method achieves
89% identification rate, which is an improvement of 21% and 16% compared to individ-
ual identity assignment, and to standard belief propagation, respectively.

1 Introduction
Multi-object tracking is a fundamental issue in computer vision. Reliable tracking and iden-
tification of targets indeed support higher-level scene analysis and interpretation. For ex-
ample, vehicle trajectories are collected to control traffic monitoring solutions [13]. People
displacement analysis is important to improve the security of public places [14], or to support
sport team game analysis, e.g., for autonomous production [5].

We consider the very common scenario for which the information captured by a (set)
of visual sensor(s) is exploited to track and assign identities to targets, based on a set of
discriminant appearance features. In many practical scenarios, the features cannot always
be reliably and accurately estimated from the observation of the scene. They are subject to
non-stationary noise, and their ability to discriminate objects varies with the scene context.
For example, color features tend to be quite noisy in presence of occlusions and clutters. In
some other cases, highly discriminant features are only available sporadically. This occurs,
for example, when reading the digit on players’ jerseys as it is available only when the jersey
is facing the camera.
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In this paper, we see multi-target tracking and identification as a two-stage process.
In the first stage, the plausible target candidates are first detected independently in each

frame, e.g., based on [6]. Each detection is characterized by a set of features and their cor-
responding confidence values. Typically, the confidence assigned to a feature depends on
various factors, e.g., whether the detection is occluded and/or visible on the camera view or
not, whether the detection is close to the camera view or not, etc. Afterwards, the detec-
tions are aggregated into tracklets, which are defined to group consecutive detections that
obviously correspond to the same physical object. The practical implementation of this ag-
gregation process is a research topic by itself. In this paper, we built on the solution described
in [2] for this step, but any other alternative could be envisioned [3, 15]. The benefits ob-
tained from such aggregation process are twofold. First, it reduces the number of entities
that have to be processed in the second stage. Second, it provides more reliable and more ac-
curate knowledge about the target appearance, since a target is observed several times along
its tracklet.

In the second stage, which embeds the main contributions of the paper, a graph-based
belief propagation formalism is considered to estimate the identity of each tracklet. Each
node in the graph corresponds to a tracklet, and is assigned a probability distribution of
identities, based on the confidence assigned to the observed tracklet appearance. Typically, a
low confidence in the tracklet appearance measurement, or a measurement that is similar to
several targets, both result into a flat and thus ambiguous identity distribution for the tracklet.
An edge between two tracklets represents that their identities are dependent, meaning that
the knowledge of the identity of one tracklet brings some information about the identity of
the other. This usually happens in two cases: (a) when the tracklets co-exist at the same
time, and (b) when the tracklets are sufficiently close in space, time and/or appearance. The
belief propagation module exploits the graph structure and the similarity between the nodes
to compute the posterior probability distribution of identities at the nodes. We view this as
an inference problem, looking for the most likely identity of a tracklet, given the identities
of the other tracklets. As a main contribution, our paper introduces an original scheduling
mechanism to order the propagation of identity beliefs along the graph. In short, the intuition
behind our approach consists in propagating the less ambiguous identity information before
more ambiguous identity cues.

The ability to drive the belief propagation, based on the level of ambiguity associated
to the identity of each node, differentiates our work from most earlier works dealing with
identity assignment. Two examples of related earlier works are [12] and [10]. In [12], the
authors assume that a track-graph, denoting when targets are isolated and describing when
they interact, exists. Assuming that the feature vectors of isolated tracks are reliable, they
define a measure the similarity between them. Later, they formulate the identity linking as
a Bayesian inference problem in order to find the most probable set of paths. For this, they
use standard message passing technique. In [10], the authors use a conditional random field
to identify players in broadcast sport videos. For this, they use a set of features, like SIFT
interest points, MSER regions, color histograms, etc. in order to propagate easy-to-classify
images of a player to other images.

We differentiate our work from the above works in the sense that the authors in both
papers assume that the feature descriptors have the same reliability throughout the time.
Therefore, those earlier works do not account for the ambiguity of the identity assignment
during message passing.

The remainder of the paper is organized as follows. Section 2 first reviews the work
of [2], to explain how the detections are aggregated into tracklets, and how each tracklet
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gets an identity distribution based on its appearance. Section 3 provides a brief introduction
to the standard belief propagation, and then describes the proposed priority-based belief
propagation. Finally, an experimental validation is provided and discussed in Section 4.

2 Tracklet definition and prior identity distribution
In this section, we introduce how the inputs to our identity assignment problem are com-
puted. Assuming that the candidate targets are independently detected at each time instant,
we briefly explain how they are aggregated into short tracks of detections that quite likely
correspond to the same physical object (called tracklets). We then define how the prior
identity probability distribution of each tracklet is estimated, based on the accumulation of
appearance cues observed along the tracklet.
2.1 Tracklet definition
Given a set of candidate detections, the tracking is generally formulated as a data-association
problem in a graph [2, 8, 15]. As introduced earlier, the detections have a set of appearance
features and their corresponding confidence values. The confidence value of a feature reflects
the reliability of its measurement. To link such detections, we follow an iterative aggregation
strategy, as in [2]. Starting with a graph in which each detection is a node, the strategy
progressively aggregates the nodes of the graph into bigger nodes, named tracklets. Each
node corresponds to a tracklet. Specifically, each iteration considers a node, named key-
node, and investigates how to link it with either previous or subsequent nodes, assuming
that the appearance of the key-node is the appearance of the target. This hypothesis testing
procedure computes a list of shortest-paths to/from the key-node. Only the path that is
significantly better than the other alternative paths defines a tracklet. The main advantage
of such a strategy is that it can benefit from the appearance features that are sporadically
available, or affected by a non-stationary noise, along the sequence of detections.

The outcome of the aggregation process is a set of tracklets. Formally, each tracklet v is
characterized by the following features:

• The positions of the starting and ending, denoted as x(s)v and x(e)v respectively,

• The starting and ending time of the tracklet, denoted as t(s)v and t(e)v respectively,
• The average appearance features of the object detected along the tracklet, and their

corresponding confidence values. These features give an initial estimate of its identity
distribution, as discussed in the next section.

2.2 Assigning identity distribution based on appearance features
In the previous section, we have presented how the tracklets are defined. This section ex-
plains how to assign an identity distribution to each of them.

We assume that there are N targets, each of them being characterized by K appearance
features, which are assumed to be known a priori. Nevertheless, the appearance features can
be learned automatically too [16].

Let the ith feature of the jth target be denoted by f( j)
i , 1 ≤ j ≤ N. Then, the feature

set for the jth target is F ( j) = {f( j)
1 , ..., f( j)

K }. For example, in a basketball match, color and
digit on the jersey of the player can be considered as features. In this case, K = 2 and
F = {color,digit}.

The appearance of a tracklet is defined by averaging the appearance features, measured
in each detection of the tracklet. Let the average appearance features for a tracklet v be
denoted by F (v)

= {f(v)1 , ..., f(v)K }. This allows us to define the probability of the tracklet v
having identity j, denoted by pv( j), as
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pv( j) ∝

K

∏
i=1

exp

[
−‖ f( j)

i − f(v)i ‖1

τ
(v)
i

]
for 1≤ j ≤ N (1)

where τ
(v)
i weighs the influence of feature i on identity assignment, and is related to the

confidence assigned to the ith feature of the tracklet v. It decreases when the appearance
feature becomes more accurate and reliable.

When τi is very large or when the appearance of a tracklet is far from all target ap-
pearances, the probability distribution, in Equation 1, tends to uniform distribution, i.e., the
identity assignment becomes ambiguous as all identities are equally likely. Conversely, when
the tracklet appearance is closer to a target appearance, the probability distribution becomes
peaky around that identity, implying that the identity assignment is less ambiguous. Conse-
quently, depending on the observed appearance features and their confidence values, some
tracklets have less ambiguous identity distributions than others.

3 Belief propagation
In this section, belief propagation is considered to exchange identity information between
the tracklets. The purpose is to compute posterior identity probabilities by merging the prior
identity distributions and exploiting the graph structure. We first survey the principles of
belief propagation. We then present how the belief propagation graph is constructed in our
application scenario. Eventually, we introduce the main contribution of our paper, which
lies in an original priority-based scheduling mechanism to select the nodes from which the
identity information is propagated.
3.1 Standard belief propagation
The framework for the belief propagation technique is defined as follows [7, 11]. An undi-
rected graph G = (V,E) is given, where V is the set of nodes in the graph and E represents
the association between the nodes. The neighborhood of node v ∈ V is denoted by Nv.

We assume that each node v ∈ V and each edge (u,v) ∈ E are associated with potential
functions φv and φuv respectively. The unary potential φv(lv) is the likelihood of node v
having label lv, and the pairwise potential φuv(lu, lv) is the likelihood that the nodes u and v
have labels lu and lv respectively.

The purpose of belief propagation is to find a labeling function l that labels each node
v ∈ V with a label lv ∈ L, |L| being the total number of labels, so as to maximize the joint
likelihood function:

p(l) ∝ ∏
v∈V

[
φv(lv) ∏

u∈Nv

φuv(lu, lv)
]

(2)

Generally, it is done iteratively by exchanging “messages” between the nodes. Let m(t)
u→v ∈

[0,1]|L| be the message that the node u sends to a neighboring node v at iteration t. Intuitively,
m(t)

u→v(lv) is the belief that node u thinks about the label lv of node v at any iteration t. Each
message is initialized uniformly. Afterwards, new messages are updated (in sum-product
form) at each iteration as:

m(t)
u→v(lv) ∝ ∑

lu∈L

[
φuv(lu, lv)φu(lu) ∏

s∈Nu\v
m(t−1)

s→u (lu)︸ ︷︷ ︸
:=hu(lu)

]
(3)

where hu(lu) is the information gathered at node u about the label lu. It is also referred to
as the “pre-message” for lu. Alternatively, the summation term of the Equation 3 is replaced
by max term and is referred as max-product form.

After T iterations, a belief vector bv is computed for each node as:
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b(T )v (lv) ∝ φv(lv) ∏
s∈Nv

m(T )
s→u(lv) (4)

Finally, the normalized belief vector b(T )
v is considered as the estimate of the identity

distribution of the node v. The complexity of message passing is O
(
|V||L|2T

)
. It requires

O
(
|L|2

)
to compute each message, there are O

(
|V|
)

messages to compute at each iteration,
and there are T iterations [7].

3.2 Graph of identity beliefs and definition of potential terms
In this section, we will first explain the graph formalism for the belief propagation. Later,
we will explain how the potential terms are constructed in our application scenario.

As discussed in Section 2, the output of aggregation step is a set of tracklets. Each
tracklet has its starting and ending time-stamps and positions. Moreover, each tracklet is
assigned an initial identity distribution, based on the observed appearance features. These
tracklets are gathered into a graph, G = (V,E), where V is a set of nodes, with each node
corresponding to a tracklet; E is a set of edges, defining the connectivity between the nodes in
V . An edge between nodes u and v implies that their identities are dependent. Thus, knowing
the identity of one brings some information about the other. Specifically, the support of the
tracklets can be used to enforce the constraint that two tracklets, which co-exist at the same
time, should belong to two different physical targets. This defines a mutex edge between
them. Additionally, the knowledge of the extremities of the tracklets (and their appearances)
enables us to estimate the proximity between them such that if the tracklets are sufficiently
close, they are likely to share the same identity. In contrast, if they are significantly far apart,
they are encouraged to have different identities. This defines a temporal edge between them.
An example is elucidated in Figure 1.

Figure 1: Each node has an identity distribution: white - a peaky distribution, black - a flat
distribution, and gray - an intermediate distribution. Solid lines represent temporal edges
whereas mutex edges are shown in dotted lines.

Now, we explain how we associate the potential terms to each node and edge. The unary
potential term φv(lv) is defined to be the likelihood of the node v∈V having a label lv. As the
prior identity distribution pv(lv), computed by Equation 1, represents how likely the label lv
is, we use it as the estimate of the unary potential. That is, φv(lv) = pv(lv), lv ∈ L.

The pairwise potential term φuv is defined to reflect that the identities of u and v are
dependent. Typically, in our practical scenario, it is defined such that, when u and v are
likely to correspond to the same physical target (e.g., because they are close in appearance
or in space and time), φuv(lu, lv) tends to zero for lu 6= lv, and to 1 for lu = lv. In contrast,
when they are likely to correspond to different physical targets (e.g., because they co-exist
in time), φuv(lu, lv) should be defined so that φuv(lu, lv) tends to zero for lu = lv, and to 1 for
lu 6= lv.

Following those general principles, we define the potentials over the mutex and temporal
edges in our graph structure as follows. In case of mutex edges, u and v should have different
labels. Therefore,

φuv(lu, lv) =
{

ε if lu = lv
1− ε otherwise, (5)
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where ε is a small positive number. Setting ε = 0 enforces that the identities of the nodes are
unique at a given time. However, it is possible that two nodes share the same identity. This,
for example, happens when a tracklet incorrectly aggregates (see Section 2) detections that
correspond to different physical targets, resulting in a mixed identity distribution. In such
cases, imposing ε = 0 might lower the performance of the system. In our settings, we use
ε = 0.1.

In case of temporal edges, we express φuv in terms of the distance duv between them.
When the distance between the nodes is small, they should be encouraged to share the same
label and vice versa. We define

φuv(lu, lv) =
{

exp(−duv/τdist) if lu = lv
1− exp(−duv/τdist) otherwise, (6)

where τdist is a constant. Now, we turn our attention towards the definition of the distance
between the nodes. Two cases are distinguished. On the one hand, if both u and v have
reliable identity estimate, then the computation of the Bhattacharyya distance between the
belief vectors bu and bv is used to define the distance between the nodes. We denote the
entropy of belief vector of a node u by E(u). Then, if E(u)< τTH and E(v)< τTH then,

duv =

[
1− ∑

lv∈L

√
bu(lv)bv(lv)

]1/2

(7)

We set τTH = 0.5 and τdist = 0.3. The choice of τTH is not critical, as long as it is chosen
small enough, as illustrated in the supplementary material.

On the other hand, if one of the nodes does not have reliable identity estimate, then the
computation of the Bhattacharyya distance between the belief vectors is irrelevant. In such
cases, when the nodes are close in time (i.e., |t(s)v − t(e)u | < τmax), the position information
is used to measure their distance duv. If they are far in space, they should have different
identities, and conversely if they are close in space, they should be encouraged to share the
same identity. We set τmax = 120 which allows to investigate nodes that are upto 6 seconds
(at the frame rate of 20 fps) far apart, and the distance is computed as:

duv =
∥∥∥x(s)v −x(e)u

∥∥∥
2

(8)

We use τdist = 450.
In contrast, when the nodes are far in time, even the position cannot guide the definition

of the distance. In this case, no message is exchanged between the nodes as it does not help
to disambiguate the possible labels of the nodes.

3.3 Priority scheduling of belief message exchanges
The standard belief propagation (BP) technique, described in Section 3.1, does not prioritize
nodes, which means that the nodes are selected in an arbitrary order to send messages to
their neighbors. Moreover, all the nodes transmit messages to their neighbors.

However, in our graph, some nodes are less ambiguous about their identities than others.
Such non-uniform distribution of ambiguity over the nodes should allow faster convergence
of the BP because the messages sent by less ambiguous nodes are more informative. Conse-
quently, they can help the more ambiguous neighbors to disambiguate their labels. Therefore,
it sounds natural to prioritize the nodes such that less ambiguous nodes transmit their mes-
sages first. Interestingly, the authors in [9] have followed the same intuition to solve an image
completion problem. We have adapted the principle of belief propagation prioritization to
our identity assignment context.
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As already mentioned, priority is related to the ambiguity of the node identity. The
definition of ambiguity (and hence the priority) of a node v depends on the peakedness of
the current belief vector bv that has been estimated by the BP algorithm. We use entropy of
the belief vector, defined as E(v) = −∑lv∈L bv(lv)log(bv(lv)), to measure the ambiguity of
node v. The entropy is maximum when the belief vector has a flat distribution and decreases
with the peakedness of the distribution. Therefore, the node v is assigned a higher priority if
it has lower entropy and vice versa. We have tested other approaches for the priority (e.g.,
cardinality of the confusion set [9], kurtosis, etc.). However, the results were not better than
the ones obtained with the entropy measure.

Apart from priority-based scheduling, to avoid propagating confusing information, the
construction of exchanged messages is also affected by the ambiguity of the information
available in each node. Specifically, during the construction of message mu→q, the node u
is supposed to gather messages from all its neighbors, except q, to construct hu. However,
since there can be some nodes in the neighborhood of u which are more ambiguous than
u, the messages coming from those nodes could be considered as being uninformative, or
even confusing, since they are nearly flat, meaning that all labels are equally likely. Thus,
we only consider those nodes that are less ambiguous than u to compute hu. The practical
implementation of this principle works as follows. Each node is assigned a committed flag,
initialized to false in the beginning of each iteration of the message exchange process. Once
a node is scheduled to exchange messages with its neighbors, its flag is set to true. In this
way, the less ambiguous neighbors of u have their committed flags set to true as they have
been scheduled before u. Similarly, the more ambiguous nodes will have their committed
flags set to false. Following the same kind of idea, the message mu→q is constructed and sent
only if q is more ambiguous than u, i.e, if the committed flag of q is false. This is illustrated
in Figure 2.

u

s

q

ms→u

mu→q

S Q

Figure 2: Message construction and dissemination at node u (in gray). The node u gath-
ers information from its less ambiguous neighbors, S (in white). Afterwards, u transmits
message to its more ambiguous neighbors, Q (in black).

The algorithm for the priority based belief propagation is presented in Algorithm 1.
After T iterations, we assign the a label lv to a node v, as

lv =

{
l∗x if b(T )v (l∗x )> κb(T )v (l∗y ),
undefined otherwise.

(9)

where l∗x = argmaxlx∈L b(T )v (lx) and l∗y = argmaxly∈L\l∗x b(T )v (ly). We use κ = 4.

4 Experimental validation
We apply the proposed method on the output of the detector and tracklet aggregation process,
as described in [2]. We run the algorithm on 10 minutes of a real-life basketball game
captured by 7 loosely synchronized cameras, distributed around a basketball court [1]. The
distribution of the cameras is not symmetrical, meaning that there are more cameras on one
side than the other. Hence, the observation of appearance features is more reliable on one
side of the court than on the other side. The identity and the position of the players have
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Algorithm 1 Priority Belief Propagation
Initialize: bv(lv)← pv(lv) and φv(lv)← pv(lv) ∀v ∈ V, lv ∈ L
for t = 1 to T do

v.committed← false ∀v ∈ V
R←V
whileR 6= /0 do

u←Schedule(R) {/* Prioritize the node u according to its level of ambiguity */}
u.committed← true
S ← {s|s ∈Nu,s.committed=true} {/* Less ambiguous neighbors of u */}
hu← Compute the pre-message of u from S
Q← {v|v ∈Nu,v.committed=false} {/* More ambiguous neighbors of u */}
for v ∈Q do

m(t)
u→v← ComputeMessage(u,v,hu,τmax)

bv← Compute belief for node v
end for
R←R\u

end while
end for
Assign identity to each node v ∈ V according to the Equation 9.

been manually defined at every second. This provides the reference ground truth used in our
evaluation.

In the rest of the section, we first describe the metrics used to evaluate the proposed
algorithm. Afterwards, the results for different configurations of the graph and different
belief propagation algorithms are presented.
4.1 Performance metrics
Given the ground truth trajectory and its identity, we follow [4] and define the performance
metrics. Let G = {g j| j = 1, ...,N} be the set of ground truth objects at time t ∈ [0,Tobs],
where Tobs is the entire observation interval. Each object g j has an identity l j and a location
x j, i.e., g j = (l j,x j). Similarly, let H = {hi|i = 1, ..., |V|} be outputs of the system at time
t. Each hypothesis hi has a location yi and an identity estimate l̂i, i.e., hi = (l̂i,yi). Thus, we
have,

At each time t, we define following error metrics:
• Missed detection corresponds to a g j for which no hypothesis is detected.
• Correct detection but wrong identification is a hi for which ||x j− yi||2 < τdist but

l j 6= l̂i. We use τdist = 30 cm.

• False positive corresponds to a hi for which there is no g j such that l j = l̂i.
Let, wit, fpt, mst and gtt be the number of wrong identifications, false positives, misses

and ground truth objects at time t respectively. Then, we define the metrics as:

FP =
∑t fpt

∑t gtt
, WI =

∑t wit
∑t gtt

, MS =
∑t mst

∑t gtt
, Accuracy = 1−FP−MS−WI (10)

4.2 Results
In order to elucidate the effect of message passing in the performance of the system, we ex-
plored the following variations of the identity assignment algorithm: (a) No BP (no message
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passing is done, equivalent to treating each node independently); (b) Standard BP (nodes
are chosen either sequentially or in an arbitrary order); and (c) Priority BP (nodes are prior-
itized in increasing order of ambiguities). Table 1 presents the metrics for the above message
passing techniques.

Accuracy(%) FP(%) WI(%) MS(%)
No BP 68.14 0.13 1.48 30.25
Std. BP (sequential) 73.59 0.15 1.76 24.50
Std. BP (random) 83.69 0.16 2.36 13.79
Priority BP 89.04 0.15 2.54 8.27

Table 1: Comparison of performance metrics for different node scheduling approaches.
From the Table 1, we can observe that the message passing between the nodes indeed

boosts the accuracy of the system from 68.14% to 89.04% at the cost of a slight increase in
the wrong identification error from 1.48% to 2.54%. Interestingly, we can observe that the
results are better for random access of the nodes as compared to the sequential access. More
importantly, the scheduling of the nodes improves the performance drastically as compared
to the arbitrary access of the nodes.

In Figure 3, we can observe how the average entropy of the system evolves at each iter-
ation. We can see that the priority BP not only attains the lowest entropy but also converges
rapidly. It shows that that the order in which the nodes transmit message indeed affects the
convergence of the system, thereby, affecting the quality of the solution.
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Figure 3: Evolution of average entropy for different node scheduling mechanisms.
In addition, we explored how the graphical model affects the performance of the priority

BP. For this purpose, we have run priority BP on other three different variations of the full
graph. They are defined as: (a) No edges (nodes are not connected by edges, and are hence
independent); (b) Mutex edges only (with only the mutex edges between the nodes); (c)
Temporal edges only (with only the temporal edges between the nodes).

Accuracy(%) FP(%) WI(%) MS(%)
No edges 68.14 0.13 1.48 30.25
Mutex edges 80.32 0.15 2.03 17.50
Temporal edges 84.49 0.15 2.71 12.65
Both edges 89.04 0.15 2.54 8.27

Table 2: Performance metrics for priority-based BP on four graphical models.
The performances of all models are shown in Table 2. We can draw two main conclu-

sions. First, adding edges to the baseline system allows exploiting the correlation between
the nodes. Second, both the temporal edges and the mutex edges help in improving the
performances.
5 Conclusion
In this paper, we presented an approach to solve identity (or, label) assignment problem in
a scenario for which target candidates have been detected and observed independently with
various degree of reliability in the belief propagation framework. Messages are transmitted
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between the detections to infer the identity of ambiguous observations, based on the reliable
identities available from non-ambiguous appearance features. We show that the order in
which messages are exchanged between the nodes affects the quality of the solution. We
have proposed a priority-based node scheduling mechanisms to favor the transmission of
information from less ambiguous to more ambiguous nodes. The above approach has been
applied on a real-life basketball game to recognize the players. The correct recognition rate
of 89% demonstrates the effectiveness and efficiency of the proposed approach.
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