Prioritizing the Propagation of Identity Beliefs for Multi-object Tracking
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Multi-object tracking requires locating the targets as well as labelling their
identities. Inferring identities of the targets is a challenge when the avail-
ability and the reliability of the appearance features do vary along the
time and the space. We see the multi-object tracking and identification as
a two-stage process.

In the first stage, plausible target candidates are detected at each frame
independently, and are aggregated into tracklets. The benefits obtained
from such aggregation process are twofold. First, it reduces the number of
entities that have to be processed later. Second, it provides more reliable
and more accurate knowledge about the appearance of the target observed
along the tracklet.

In the second stage, which embeds the main contributions of the pa-
per, a graph-based belief propagation formalism is considered to estimate
the identity of each tracklet. Each node in the graph corresponds to a
tracklet, and is assigned a probability distribution of identities, based on
the tracklet appearance, and given prior knowledge of the possible tar-
get appearances. Typically, a low confidence in the tracklet appearance
measurement, or a measurement that is similar to several target appear-
ances, both result into a flat and thus ambiguous identity distribution for
the tracklet. Afterwards, belief propagation is considered to infer the iden-
tities of more ambiguous nodes from those of less ambiguous nodes, by
exploiting the graph constraints. In contrast to the approaches with stan-
dard belief propagation [2], which treats the nodes in an arbitrary order,
the proposed method schedules less ambiguous nodes to transmit their
messages first.

From appearance features to identity distribution We assume that
there are N targets, each of them being characterized by K appearance

features. The feature set for the j-th target is F(/) = {fgj)7 ,..,fgg)}. Let

the appearance features for a tracklet v be FU - {fgv), ...,fﬁ(”) }. Then, the
probability of the tracklet v having identity j, denoted by p,(j), as

K N
pv(j)o(Hexp [—|| ffj)—fgv) ||1/7:i(v) forI<j<N (1
i=1
where Ti(v) monitors the influence of feature i on identity assignment.

It decreases as the appearance feature observation becomes more reliable.
Depending on the observed appearance features and on the estimated reli-
ability of these observations, some tracklets have less ambiguous identity
distributions than others.

Graph definition The tracklets are gathered into a graph, G = (V,£),
where V is a set of nodes, with each node corresponding to a tracklet; £
is a set of edges, defining the connectivity between the nodes in V. An
edge between nodes u and v implies that their identities are dependent.
For example, two tracklets, which co-exist at the same time, should be-
long to two different physical targets. This defines a mutex edge between
them. Additionally, if they are sufficiently close in space, time and/or ap-
pearance, they are likely to share the same identity, whereas if they are
far, they should be encouraged to have different labels. This defines a
temporal edge between them. Each node v € V and each edge (uv) € £
is characterized by potential functions ¢, and ¢,, respectively. In short,
¢, (1) represents how likely is the label /, be assigned to the node v. Sim-
ilarly, ¢y (1y,1,) represents the likelihood that nodes u and v have labels
1, and [, respectively.

Belief propagation We briefly introduce how the belief propagation
formalism works. A graph G = (V, £) is given, where V is the set of nodes
and £ represents the association between the nodes. The neighbourhood
of node v € V is denoted by N,.. The purpose of belief propagation is to
find a labelling function / that labels each node v € V with a label [, € L,
L being the set of possible labels, so as to maximize the joint likelihood

function:
p(l) = I_I [‘Pv(lv) H ¢uv(lu7lvﬂ )
vey ueN,
It is done iteratively by exchanging “messages” between the nodes. Let
()

m,,’,, be the message that the node u sends to a neighbouring node v at

iteration 7. Intuitively, m&iv(lv) is the belief that node u thinks about the

label [, of node v at any iteration #. Each message is initialized uniformly.
Afterwards, new messages are updated (in sum-product form) at each it-

eration. as: _
ml(ltln’(lv) < Z [(Puv(lm lv)(l)u(lu) mgtﬁlp (lu)] 3)
o LEeL ) se./\/'“}v
After T iterations, a belief vector b, is computed for node v as
T T
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from which the most likely identity is xees/t\i/;nated.

Construction of potential terms We briefly explain how we design
the potential terms in our application scenario. The unary potential term
¢, (1,) is defined to be the likelihood of the node v € V having a label /,,.
Itis given as: ¢y (1,) = py(Ly), Iy € L (ref. Eqn 1). In case of mutex edges,
u and v should have different labels. Therefore,

€ ifl, =1,
9 (busbv) = { 1 —¢ otherwise, )

We use € = 0.1. We express ¢, for temporal edges in terms of the dis-

tance d,,, as
_ exp(—duy/ Tdist) ifl, =1,

Puv (i bv) = { 1 —exp(—dyy/Tgist) otherwise, ©)
where Tyjy is a constant. If both u and v have reliable identity estimate,
then the Bhattacharyya distance between the belief vectors, b, and b,,
is used to define d,,,. On the other hand, if one of the nodes does not
have reliable identity estimate, then the computation of the Bhattacharyya
distance is irrelevant. In such cases, when the nodes are close in time, the
position information is used to measure their distance. In contrast, when
the nodes are far in time, even the position cannot guide the definition of
the distance. In this case, no message is exchanged between the nodes.

Priority scheduling of belief message exchanges To emphasize our
contribution, we make two observations about the standard belief prop-
agation: (i) nodes are arbitrarily selected to send messages, (ii) a node
gathers information from all its neighbours. However, in our graph formu-
lation, some nodes are less ambiguous about their identities than others.
The messages sent by such nodes are more informative. Hence, they help
the more ambiguous neighbours to disambiguate their labels [1]. More-
over, during the message construction step, since the messages coming
from more ambiguous nodes are usually uninformative and even confus-
ing, we strictly restrict gathering of messages from less ambiguous nodes
as shown in Figure 1.

Figure 1: Message construction and dissemination at node u (in gray).
The node u gathers information from its less ambiguous neighbors, S (in
white). Afterwards, u transmits message to its more ambiguous neigh-
bors, Q (in black).

Given the current estimate of belief vector b,,, we use entropy of the
belief vector to measure the ambiguity level of a node. Then, nodes are
sorted in increasing order of entropies.

Results Experimental validation is performed on 10 minutes long
real-life basketball video. The proposed method achieves 89% identifica-
tion rate, which is an improvement of 21% and 16% compared to individ-
ual identity assignment, and to standard belief propagation, respectively.
Please refer to the main paper and the supplementary paper for detailed
analysis.
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