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Abstract

We introduce a new approach for part-based human pose estimation using multi-layer
composite models, in which each layer is a tree-structured pictorial structure that models
pose at a different scale and with a different graphical structure. At the highest level, the
submodel acts as a person detector, while at the lowest level, the body is decomposed into
a collection of many local parts. Edges between adjacent layers of the composite model
encode cross-model constraints. This multi-layer composite model is able to relax the
independence assumptions of traditional tree-structured pictorial-structure models while
permitting efficient inference using dual-decomposition. We propose an optimization
procedure for joint learning of the entire composite model. Our approach outperforms
the state-of-the-art on the challenging Parse and UIUC Sport datasets.

1 Introduction
Detecting humans and identifying body pose are key problems in understanding natural im-
ages, since people are the focus of many (if not most) consumer photographs. Pose recogni-
tion is a challenging problem due not only to the usual complications of object recognition—
cluttered backgrounds, scale changes, illumination variations, etc.—but also to the highly
flexible nature of the human body. To deal with this flexibility, deformable part-based mod-
els [6, 7] have emerged as a dominant approach in recognizing people and other articulated
objects [3, 11, 19, 23, 24, 25]. These part-based models decompose an object into a set of
parts, each of which is represented with a local appearance model, and a geometric model
that constrains relative configurations of the parts. Recognition is then cast as an inference
problem on an undirected graphical model, in which the parts are represented by vertices and
the constraints between parts are represented as edges.

Many of these part-based models assume a tree structure [6, 7, 24], capturing the kine-
matic constraints between parts of the body—e.g. that the lower arm is connected to the
upper arm, which is connected to the torso, etc. Such tree structures allow exact inference
to be performed efficiently on the underlying graphical model via dynamic programming.
However, the tree structure makes conditional independence assumptions between uncon-
nected parts, which can lead to pose estimates that obey kinematic constraints but are still
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Figure 1: Illustration of our multi-layer composite part-based model.

not sensible; for example, a single image region might be recognized as two different body
parts, or a pose might be estimated that defies constraints of gravity and human balance.

A variety of approaches have been proposed for dealing with these problems, including
introducing a few cycles into a tree-structured graphical model [23, 25], adding common
factor variables [11], or using a fully-connected graphical model [19] to capture more spatial
constraints among the parts. Although effective, these approaches introduce cycles into the
graphical model which generally makes exact inference intractable. How to model richer
spatial constraints that still permit efficient inference is an important open question.

Overview and Contributions. In this paper, we propose a new model that addresses these
problems from a different perspective. Instead of adding cycles to the original model, we
build a multi-level model consisting of multiple tree-structured models with different res-
olution scales and numbers of parts, allowing different degrees of structural flexibility at
different levels, and connect these models through hierarchical decomposition links between
body parts in adjacent levels. A visualization of our model with three layers is shown in
Figure 1 (left). Even though the composite model is a loopy graph, it can be naturally de-
composed into tree-structured sub-problems within each level and the cross-model constraint
sub-problem across levels (which is also tree-structured as shown in Figure 1 (right)). These
tree-structured sub-problems are amenable to exact inference, and thus joint inference on the
composite model can be performed via dual-decomposition [2].

We train these models jointly, and show that the composite models outperform state-of-
the-art techniques on two challenging pose recognition datasets. We believe these composite
models provide a principled way to trade off the competing goals of model expressiveness
and ease of inference, by “stitching” together multiple tree-structured models into a richer
composite model while keeping the complexity of joint inference in check.

2 Related Work

Felzenszwalb and Huttenlocher [7] introduced part-based pictorial structure models to the
problem of human pose recognition, showing that exact inference on tree-structured graph-
ical models could be performed efficiently via dynamic programming and distance trans-
forms. Ramanan [15] used the same framework but improved the part appearance models
and adopted an iterative inference approach. Andriluka et al. [1] achieved significantly better
results using appearance models learned in a discriminative Adaboost-based framework.

Hierarchical Models. As mentioned in the previous section, various techniques for relaxing
the part independence assumptions have been proposed [11, 19]. Particularly relevant to our
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work are approaches using hierarchical models, such as Zhu et al. [25] and Wang et al. [23].
Our proposed composite models are also hierarchical, but differ in the structure of the hierar-
chy. In our ensemble, each submodel is a separate and complete tree-structured model of hu-
man pose, as opposed to simply being “larger” parts [23, 25]. This distinction is crucial since
this unique graphical structure allows the use of principled and efficient inference based on
dual-decomposition, while reusing existing algorithms developed for tree-structured models.
Multi-scale Models. Capturing visual features at multiple scales has been shown to be im-
portant. Sapp et al. [16] use cascaded models at different resolutions in order to speed up
inference; Park et al. [12] use multi-resolution models to detect objects at different scales.
Our models incorporate visual cues at multiple resolutions by building HOG feature pyra-
mids as in [24]. We also follow recent work that has modeled the appearance of body joints in
addition to body parts, by including joints as extra vertices in the pictorial structure [17, 24].
Mixture Models. To accurately model the highly flexible human form, mixture models for
both appearance and geometry have been proposed. Singh et al. [18] use mixtures of hetero-
geneous part detectors, fusing evidence from different feature types. Wang and Mori [22] use
mixtures of tree models to capture richer spatial constraints and explicitly model part occlu-
sions. Johnson and Everingham [8] cluster human poses and then build mixtures of pictorial
structure models using these clusters. Yang and Ramanan [24] assign a latent “type” variable
to each part, allowing parts to select between several appearance models, and jointly learn
the parameters in a discriminative structured learning framework. We use a similar approach
based on latent part types, but in a framework featuring hierarchical, multi-scale models.
Dual-Decomposition. Some very recent work has applied dual-decomposition to pose recog-
nition, but on different models and applications than ours. Wang and Koller [21] model pose
estimation and segmentation jointly, and apply dual-decomposition for efficient inference.
Sapp et al. [17] use dual-decomposition but their aim is articulated motion parsing in video
and relies on motion features, and they do not consider hierarchical models as we do here.

3 Multi-layer Composite Models for Pose Recognition
We now describe our multi-layer composite model for pose recognition.
Base Model. Given an image I and a model of the human body, the goal of pose recognition
is to find high-likelihood model configurations in the image. Our approach builds on the
work of Yang and Ramanan [24] which has demonstrated state-of-art performance. The key
innovation in their deformable parts-based model is the use of a mixture of parts, which
allows the appearance of each part to change discretely between different “part types.”

More formally, their model consists of a set P of parts in a tree-structured model having
edges E ⊆

(P
2

)
, such that E is a tree. Let y be a vector that represents a particular config-

uration of the parts, i.e. the location and type of each part. They define a function S(I,y)
that scores the likelihood that a given configuration y corresponds to a person in the image.
Moreover, S(I,y) decomposes along the nodes and edges of the tree:

S(I,y) = ∑
p∈P

D(I,yp)+ ∑
(p,q)∈E

(
L(yp,yq)+T (yp,yq)

)
, (1)

where D(I,yp) is the score for part p being in configuration yp given local image data (the
data term), L(yp,yq) is the relative location term measuring agreement between locations of
two connected parts, and T (yp,yq) measures the likelihood of observing this pair of part-
types. L(yp,yq) is defined as the negative Mahalanobis distance between part locations, and
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T (yp,yq) = ~Bt(yp),t(yq) is a part co-occurrence table that is learned discriminatively in the
training stage, where t(yp) gives the part type of part p.

Proposed Generalization. We generalize this model to include multiple layers, with each
layer like the base model but with a different number of parts and a different tree structure. In
particular, letM= {(P1,E1), ...,(PK ,EK)} be a set of K tree-structured models, let yk denote
the configuration of the parts in the k-th model, and let Y = (y1, ...,yK) be the configuration
of the entire multi-layer composite model. We now define a joint scoring function:

Ŝ(I,Y) =
K

∑
k=1

Sk(I,yk)+
K−1

∑
k=1

χ(yk,yk+1), (2)

where Sk(·, ·) is the single-layer scoring function of equation (1) under the model (Pk,Ek),
and χ(yk,yk+1) is the cross-model scoring function that measures the compatibility of the
estimated configurations between adjacent layers of the model.

As Figure 1 shows, we impose a hierarchical structure on the composite model, such
that each part at level k is decomposed into multiple parts at level k + 1. We call these
decomposed parts the child nodes. For a part p ∈ Pk, let C(p) ⊆ Pk+1 be the set of child
nodes of p in layer k+ 1. The cross-model scoring function χ scores the relative location
and part types of a node in one layer with respect to its children in the layer below,

χ(yk,yk+1) = ∑
p∈Pk

∑
q∈C(p)

B(yk
p,y

k+1
q ), (3)

where B(yk
p,yk+1

q ) is a measure of the likelihood of the relative configuration of a part and
its child across the two submodels. Next, we describe inference in this composite model and
then discuss how to learn parameters of the composite model in Section 3.2.

3.1 Dual Decomposition for Efficient Inference
We have defined our multi-layer composite model as a collection of pose estimation models
and a cross-model scoring function. As Figure 1 illustrates, each layer of the hierarchy is
tree-structured, so exact inference within each layer can be performed efficiently via dynamic
programming. The constraints between layers (blue lines in the figure) also form a tree-
structured model, so they are also amenable to exact efficient inference. The overall graphical
model has cycles, however, and thus exact inference on this model is not tractable. Fortu-
nately, we can exploit the natural decomposition of this composite model into tree-structured
subproblems to perform inference using dual-decomposition. Dual-decomposition is a clas-
sical technique [2] that has recently been introduced to the vision literature [10] for solving
inference problems in loopy graphical models. The idea is to decompose a joint inference
problem into easy sub-problems, solve each sub-problems, and then iteratively have the sub-
problems communicate with each other until they agree on variable values.

The following steps are a straightforward adaptation from [10]. Let Ck denote the set
of all feasible (discrete) values for yk for each layer of the model. We make a copy of Y,
which we call X = (x1, ...,xK), and enforce equality constraints that require Y = X. With
this notation, we can rewrite equation (2) as:

max
Y,X

K

∑
k=1

S(I,yk)+
K−1

∑
k=1

χ(xk,xk+1), s.t. yk = xk, yk ∈Ck, xk ∈ Ck, ∀k. (4)
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We then dualize the equality constraints, replacing the hard equality constraints between Y
and X with a soft penalty term,

g(λ ) = max
Y,X

K

∑
k=1

S(I,yk)+
K−1

∑
k=1

χ(xk,xk+1)+
K

∑
k=1

λk · (yk−xk), s.t. yk ∈ Ck, xk ∈ Ck, (5)

where λk is the Lagrangian multiplier that specifies the strength of the penalty, and · denotes
inner product between two vectors. The effect of relaxing the hard equality constraint is that
the maximization can now be decoupled into independent terms,

g(λ ) =
K

∑
k=1

max
yk

(
S(I,yk)+λ

T
k ·yk

)
+max

X

(
K−1

∑
k=1

χ(xk,xk+1)−
K

∑
k=1

λ
T
k ·xk

)
. (6)

In this form, it is clear that g(λ ) can by evaluated for a given λ by solving a series of simpler
sub-problems. The optimal Y is found by maximizing each term of the first summation,
i.e. by performing inference on each individual layer of our composite model via dynamic
programming. We can find the optimal X by solving the maximization in the second term of
equation (6), which is also tree-structured and allows the use of dynamic programming.

It can be shown [2] that for each value of λ , the function g(λ ) provides an upper-bound
on the original (constrained) maximization. Thus, we can set up a dual problem that achieves
the tightest upper-bound as: minλ g(λ ). This dual problem is convex but non-smooth [2],
and we use subgradient descent to perform the minimization. Subgradient descent is an
iterative algorithm that updates the current setting of λ

(t)
k at iteration t as:

λ
(t+t)
k ← λ

(t)
k −α

(t)
(

yk(λ
(t)
k )−xk(λ

(t)
k )
)
, (7)

where yk(λ
(t)
k ),xk(λ

(t)
k ) are the optimal solutions in (6) for the current setting of λ

(t)
k ; and

α(t) is the step size at iteration t. For a particular choice of step size, subgradient descent is
guaranteed to converge to the optimum of the dual problem [2]. We discuss implementations
details like the step size and stopping criteria in Section 4.

3.2 Learning with Structural SVMs
We now address the issue of learning the parameters of our composite model, including the
submodel parameters for each layer and the parameters for the cross-model scoring function.
Features. Let f (Im,yk) denote the feature vector for image Im under submodel k and f χ(Y)
be the feature vector for the cross-model scoring term. Submodel features f (Im,yk) are the
same as those used by Yang and Ramanan [24], i.e. HOG features for each part filter, part
type co-occurrence features, and deformation features (dx, dx2, dy, dy2), where (dx, dy) is
the displacement between two parts. The cross-model scoring feature encodes part-type
co-occurrences, and is defined as f χ(Y) = ~δt(yp),t(yq), where δt(yp),t(yq) = 1 if t(yp) = t(yq),
otherwise δt(yp),t(yq) = 0.
Parameters. To perform joint training for the entire composite model, we stack all features
of all of the layers along with the cross-model features into a single feature vector Φ(Im,Y),

Φ(Im,Y) =
[

f (Im,y1), f (Im,y2), . . . , f (Im,yK), f χ(Y)
]
, (8)
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1-part m
odel

10-part m
odel

26-part m
odel

Figure 2: Part-based models used in our multi-layer composite model. For each layer (row)
of the composite model, we show four randomly-chosen mixture components.

All parameters of the model are also placed into a single vector β = (β 1, . . . ,β K ,β χ). The
score of the entire composite model on a given image and configuration can then be written
as a dot product between parameters and features, Ŝ(I,Y) = β ·Φ(Im,Y).
Training. Given training data with labeled positive instances, i.e. images containing people
with annotated part locations

{
{Im,Ym} | m ∈ pos

}
, and negative instances, i.e. images not

containing people
{
{Im, /0} | m ∈ neg

}
, we learn β with a structured SVM formulation [20],

min
β

1
2
‖β‖2 +C∑

m
ξm (9)

s.t. β ·Φ(Im,Ym)≥ 1−ξm ∀m ∈ pos (10)
β ·Φ(Im,Y)≤−1+ξm ∀m ∈ neg,∀Y (11)

We optimize this objective function using the dual coordinate descent method of [24]. Note
that this formulation forces all of the exponentially many configurations for negative in-
stances to score lower than −1. In practice, we perform dual decomposition with our multi-
layer composite model on each negative image to search for hard negative training examples.
Implementation details are explained in Section 4.1.

4 Experiments
Datasets. We evaluate our composite models on two challenging datasets: Image Parse [15]
and UIUC Sport [23]. Parse contains 100 training and 205 test images, while Sport contains
649 training and 650 test images. Both datasets have one person per image annotated with 14
body joints. We follow [24] and draw our negative images from the INRIA person dataset [4].

4.1 Implementation Details

Inference. For the part appearance models, we follow [24] and others by using HOG fea-
tures [4] computed at multiple resolutions, yielding a feature pyramid for each image. We
perform dual decomposition on each level of the feature pyramid independently, collect de-
tections from all of the levels, and remove overlapping detections via non-maximal suppres-
sion. In our current implementation, we restrict our cross-modeling scoring function B(·, ·)
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Figure 3: Primal objective and dual objective (left) and primal-dual gap (right) as a function
of number of iterations during subgradient descent.

to capture only part type co-occurrence relations. This gives a relatively small label space,
which allows efficient inference while obtaining good performance (although modeling rel-
ative location between parts across layers is an interesting direction for future work).

The subgradient descent step size in equation (7) is important in making inference work
well in practice. We experimented with various strategies, finding that a modification of
Polyak’s step size rule [14], α

(t)
k = 1+m

τt+m ·
(dualt−primaltbest )

‖∇gt‖ , worked best, where dualt is the
objective value of the dual problem in equation (6) in iteration t, primalt

best is the best primal
objective value in equation (4) observed so far in iterations up to t, ‖∇gt‖ is the norm of the
subgradient at t, m is a scalar constant (we use m = 10), and τ t is the number of times that the
dual-objective has increased up to t. Using this step size rule, dual decomposition converges
to a very small gap (< 0.001) quickly, as shown in Figure 3 for a sample image. The entire
inference process takes about 20 seconds per Parse image on a 3.0GHz machine.

Learning. For each dataset, we train several variants of our composite models: i) a two-layer
model consisting of a 1-part model and a 26-part model; ii) a two-layer model consisting of a
10-part model and a 26-part model; and iii) a three-layer model consisting of 1-part, 10-part,
and 26-part models. The 26-part model is the same defined in [24], consisting of both body
parts and joints. The 10-part model is defined using new body parts (head, torso, upper arms,
lower arms, upper legs, lower legs), and the 1-part model is a simple whole-body template
mixture model. The annotations for the 10 and 1 part models were derived from the existing
annotations in the datasets. As in [24], the mixture types of each body part are obtained by k-
means clustering over joint locations. For the 26-part model, we use the same number of part
types per body part as in [24], while for the 10-part model we use 5 torso types, 5 head types,
5 arm types and 6 leg types. The 1-part model uses 9 types. To learn each composite model,
we first train a separate model for each layer using the publicly-available code of [24], and
then use these models as initialization for learning our composite model.

In practice, there are many more negative (non-person) instances available than positive
instances. To reduce the set of negative exemplars that must be considered, we select hard
negative exemplars for the next iteration of learning by looking for high-scoring non-person
instances under the current multi-layer composite model. To construct negative training
instances efficiently, we run the composite model on each negative image, select all detected
poses having score above a threshold, sort the detections from each layer, and construct
joint exemplars by matching them in the order of detection scores. To speed up training, we
stopped subgradient descent after 50 iterations, since in practice the optimization algorithm
has typically converged by that point (as in the example in Figure 3). A visualization of a
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Parse dataset UIUC Sport dataset
Torso UL LL UA LA Head Total Torso UL LL UA LA Head Total

Ramanan [15] 52.1 37.5 31.0 29.0 17.5 13.6 27.2 28.7 7.3 19.2 7.5 20.6 12.9 15.1
Wang [23] – – – – – – – 75.3 49.2 39.5 25.2 11.2 47.5 37.3
Yang [24] 82.9 69.0 63.9 55.1 35.4 77.6 60.7 85.3 61.3 55.5 49.7 35.5 73.5 56.3
Ours (26+10) 82.0 72.4 67.8 55.6 36.6 79.0 62.6 85.4 61.6 57.9 49.1 34.8 72.9 56.4
Ours (26+1) 85.6 71.7 65.6 57.1 36.6 80.4 62.8 86.0 62.2 57.5 51.0 36.3 73.7 57.3
Ours (26+10+1) 81.0 71.7 67.6 55.9 36.3 79.5 62.3 86.2 61.2 55.7 49.9 35.9 73.8 56.5
Pishchulin [13]* 88.8 77.3 67.1 53.7 36.1 73.7 63.1 – – – – – – –
Johnson [9]* 87.6 74.7 67.1 67.3 45.8 76.8 67.4 – – – – – – –
*[13] and [9] are not directly comparable because they use additional training data with more annotations.

Table 1: Pose estimation results (PCP) on Parse (left) and UIUC Sport (right) datasets. PCP
scores are shown for each of six body parts (torso, UL=upper legs, LL=lower legs, UA=upper
arms, LA=lower arms, head) and the combined score for all parts. All PCP scores here use
criterion 1A (see text for details); for consistency, we re-computed the results from [24] to
use this criterion, and for [15] we use the re-computed statistics reported in [23].

sample multi-layer composite model learned using our technique is shown in Figure 2.

4.2 Results
Evaluation criteria. We evaluate our results using the Percentage of Correct Parts (PCP)
metric, which counts the fraction of body parts that are correctly localized compared to the
ground-truth (within some threshold). Unfortunately, as pointed out in [13], the PCP scoring
metric has been implemented in slightly different ways in different papers, which has led
to some confusion in the literature. These differences fall along two different dimensions.
First, there are two subtly-different definitions of a correct part localization:

1. Part is correctly localized if the distance of both its endpoints from respective ground
truth endpoints is less than a fraction of the part length; or

2. Part is correctly localized if the mean distance between estimated and ground truth
endpoints is less than a fraction of the part length.

Second, there are two ways to compute the final aggregate PCP score across the dataset:
A. PCP is calculated for every image, and averaged across all images to produce an ag-

gregate score; or
B. PCP is calculated only for images in which the human is correctly localized according

to a ground truth bounding box, these scores are averaged together, and then multiplied
by the detection rate.

According to our understanding, Eichner et al. [5] proposed variant 1B, but their publicly-
released software toolkit implemented 2B which yields higher scores. Yang et al. [24] also
used 2B, while both Pischulin et al. [13] and Wang et al. [23] use 1A. Unfortunately, these
seemingly subtle variations lead to significant differences. We follow the two latter papers
and also use 1A, which we hope will become the standard definition, but also report results
under the other variants to illustrate the significant differences they create. Note that [13]
does not report PCP numbers for individual parts, but rather combines right and left parts
together. We do the same, and also average the PCP of the left and right limbs reported
by [23] to convert their results into this metric as well.

Results. PCP results (using variant 1A) on Parse and UIUC Sport datasets are shown in
Table 1. We see that our composite models outperform state-of-the-art methods on both
datasets, beating [24] by about 2 percentage points for Parse and by 1 percentage point
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PCP (variant 1A) PCP 1B PCP 2B
Threshold 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.5 0.5
Yang [24] 33.4 47.2 56.0 60.7 64.4 67.2 69.7 71.5 56.0 74.9
Ours (26+10) 34.5 49.2 57.6 62.6 65.9 68.7 71.3 73.0 58.5 75.0
Ours (26+1) 34.5 48.3 56.5 62.8 66.9 70.0 72.0 73.6 59.3 75.8
Ours (26+10+1) 34.3 48.9 57.3 62.3 65.7 68.6 70.9 72.7 59.5 75.9

Table 2: Evaluation results on the Parse dataset under different definitions of Percentage of
Correct Poses (PCP), using variants 1A, 1B and 2B which have all been used by different
papers in the literature (see text for details). For variant 1A, we show results under different
evaluation thresholds, where larger thresholds are more lenient in scoring part localizations.

(a) (b)

Figure 4: Sample results. (a): Examples in which [24] failed, but our 3-level model estimated
poses correctly. (b): Some failure cases of our model.

for Sport. Among our composite models, the 2-layer model (26+1) achieves the best per-
formance under PCP-1A, however the 3-layer model performs best under PCP-1B,2B. Our
models also outperformed in terms of person detection rate, with 79.0%, 81.9%, and 82.4%
for our 26+10, 26+1, and 26+10+1 models, respectively, compared to 76.6% for [24]. This
suggests that much of our increase in PCP is due to more accurate detections. This is an in-
tuitive result because our 1-part layer (consisting of a mixture of large HOG templates) can
be considered a person detector. Our composite models with models at multiple scales thus
combine the advantages of single-part models for person detection, with the highly flexible
multi-part models needed for accurate part localization. Some qualitative results are pre-
sented in Figure 4, showing cases in which our method correctly estimated pose while [24]
failed for one or more limbs, as well as some failure cases.

Table 2 presents experimental results under alternative definitions of PCP. For PCP cri-
terion 1A, we present scores for different values of the part localization threshold (which
specifies the percentage of body part length that part endpoints can be from the positions
given in ground truth). The table also shows PCP results computed under two alternative
definitions that have been used in the literature (1B and 2B). We see that seemingly subtle
differences in PCP definition can yield very different conclusions. Our composite models
beat [24] under all of the criteria, but which composite model performs best depends on the
PCP metric. Moreover, variant 2B yields much higher absolute PCP scores, illustrating the
importance of adopting a consistent metric to avoid further confusion in the literature.

5 Conclusion

In this paper we presented a multi-layer composite model for human pose estimation prob-
lems. By combining different cues from different submodels, our composite model outper-
forms state-of-the-art pose estimation methods on challenging datasets. Our model is a gen-
eral framework for combining different pose estimation models. In future work, we plan to
study how to capture richer cross-model constraints (e.g. define spatial constraints between
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adjacent submodels), and to apply our model to related tasks like human action recognition.
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