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Abstract

In many algorithms for background modeling, a distribution over feature values is
modeled at each pixel. These models, however, do not account for the dependencies
that may exist among nearby pixels. The joint domain-range kernel density estimate
(KDE) model by Sheikh and Shah [7], which is not a pixel-wise model, represents the
background and foreground processes by combining the three color dimensions and two
spatial dimensions into a five-dimensional joint space. The Sheikh and Shah model,
as we will show, has a peculiar dependence on the size of the image. In contrast, we
build three-dimensional color distributions at each pixel and allow neighboring pixels to
influence each other’s distributions. Our model is easy to interpret, does not exhibit the
dependency on image size, and results in higher accuracy. Also, unlike Sheikh and Shah,
we build an explicit model of the prior probability of the background and the foreground
at each pixel. Finally, we use the adaptive kernel variance method of Narayana et al. [5]
to adapt the KDE covariance at each pixel. With a simpler and more intuitive model,
we can better interpret and visualize the effects of the adaptive kernel variance method,
while achieving accuracy comparable to state-of-the-art on a standard backgrounding
benchmark.

1 Introduction
Background subtraction, often a first step in segmenting moving objects in videos, is most
commonly achieved by modeling the background color likelihoods at each pixel. Stauffer
and Grimson [8] use a parametric Gaussian mixture model to estimate the likelihoods at
each pixel. A non-parametric model was introduced by Elgammal et al. [1], where the
likelihoods at each pixel are modeled using a kernel density estimate (KDE) by using the
data samples from previous frames in history. These pixel-wise models do not allow for the
observations at one location to influence the estimated distribution at a different but nearby
location. By including each pixel’s position information and modeling the likelihoods using
a five-dimensional distribution in a joint domain-range representation, Sheikh and Shah [7]
allow pixels in one location to influence the distributions in another location. They show
that this sharing of spatial information leads to more accurate background subtraction. Their
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background model is a single distribution in the joint domain-range space. As we will see
later, their classification criterion, based on the ratio of likelihoods in this five-dimensional
space, has an undesirable dependence on the size of the image. Like Sheikh and Shah,
we model the foreground and background likelihoods by a KDE using pixel samples from
previous video frames. However, we model the processes using a three-dimensional color
distribution at each pixel. Our distributions are conditioned on spatial location, rather than
being joint distributions over position and color. Our modeling avoids the dependence on the
image size and yields better results.

Recent work on kernel estimate based background modeling by Narayana et al. [5] has
shown that adapting the kernel variance values for each pixel yields significantly better re-
sults than using a uniform kernel variance for all pixels. We use a similar approach for
adapting the kernel variance at each pixel and show through both synthetic and real data ex-
amples that such a scheme is useful. The improvements we present over their approach are
the separation of the foreground process into ‘previously seen’ and ‘previously unseen’ fore-
ground processes and the use of explicit spatial priors for the three processes - background
(bg), previously seen foreground (fg), and previously unseen foreground (fu). Our prob-
abilistic formulation with likelihoods and a spatially dependendent prior for each process
leads to a posterior distribution over the processes.

Texture features like local binary and ternary patterns are robust to lighting changes
and can be useful in background subtraction [2, 4]. A hybrid approach using both color
and texture features combines the strengths of both feature spaces [5, 9]. In our system,
we combine color features with scale invariant local ternary patterns (SILTP) [4], a very
effective texture representation.

Benchmark comparisons on a standard data set show that our system’s performance is
comparable to the results of Narayana et al., which are the best reported results on our chosen
benchmark. The advantage of our model over that of Narayana et al., is that our probabilistic
model is more intuitive. The results from our model can be understood more clearly and the
various constants and factors in the model can be interpreted more meaningfully.

2 Joint domain-range KDE

Sheikh and Shah [7] model the spatial dependencies between observed intensities by propos-
ing a joint domain-range representation of the pixels. The background and foreground pro-
cesses are modeled with non-parametric density estimation using samples from previous
frames. Each pixel a is represented as a five-dimensional vector, a = [ax,ay,ar,ag,ab]. The
background sample set B consists of the set of pixels that were classified as background in
the previous frames in the video, B = {bi : i ∈ [1 : nB]}, where nB is the number of pixels in
the background set.

Using a KDE, the likelihood of the pixel under the Sheikh and Shah background model [7]
is

P(a|bg;Σ
B) =

1
nB

nB

∑
i=1

G(a−bi;Σ
B), (1)

where G(x;ΣB) is a five-dimensional Gaussian with zero mean and diagonal covariance ΣB.
In our model, since we allow pixel samples to contribute probabilistically to the KDE based
on the samples’ probability of belonging to the background, we have the following modifi-
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cation of the Sheikh and Shah model:

P(a|bg;Σ
B) =

1
∑

nB
i=1 P(bg|bi)

nB

∑
i=1

G(a−bi;Σ
B)P(bg|bi), (2)

where P(bg|bi) is the probability that pixel bi is background.
Our background model is similar to the described model, with the distinction that at each

pixel, we model a three-dimensional color distribution conditioned on the pixel’s spatial
location. Denoting the color of the pixel a by ac and the position by ax, we have

P(ac|bg,ax;Σ
B) =

1
Kbg

nB

∑
i=1

G(ac−bic;Σ
B
range)G(ax−bix;Σ

B
domain)P(bg|bi), (3)

where ac = [ar,ag,ab], and bic = [bir,big,bib] are the color values for pixel a and background
pixel bi respectively. Similarly, ax = [ax,ay] and bix = [bix,biy] are the position values of the
pixels. The matrix ΣB is separated into its color (range) and position (domain) covariance
matrices ΣB

range and ΣB
domain. Kbg is the appropriate normalization factor that we explain next.

2.1 Normalization of the kernel estimates
Considering that each background sample bi contributes probabilistically to the background
likelihood depending on its probability of being background and its distance in position from
the location ax at which the likelihood is being computed, we have the following normaliza-
tion factor:

Kbg =
nB

∑
i=1

G(ax−bix;Σ
B
domain)P(bg|bi). (4)

By changing the normalization constant in the KDE, we achieve a likelihood model that is
specific to each location in the image. We have a pixel-wise model, but the likelihood at any
given pixel location is affected by pixel samples from its spatial neighborhood.

Many other existing methods [1, 8] also model distributions at each pixel location. Re-
cently, in the tracking literature, Sevilla and Learned-Miller [6] have used the term “Distri-
bution Fields” for models that use a distribution at each pixel location, and in which each
distribution is estimated from a local neighborhood. Because we estimate the distributions
from local neighborhoods in a similar manner, we refer to our method as “distribution field
backgrounding” (DFB).

2.2 Foreground and new object models
In the Sheikh and Shah system, along with the background process model, an explicit fore-
ground model is maintained with pixel samples that have been classified as foreground in the
previous frames. Similar to Equation 3, our foreground likelihood is

P(ac|fg,ax;Σ
F) =

1
Kfg

nF

∑
i=1

G(ac− fic;Σ
F
range)G(ax− fix;Σ

F
domain)P(fg|fi). (5)

The foreground sample set F consists of the foreground pixels from previous frames,
F = { fi : i ∈ [1 : nF ]}, where nF is the number of pixels in the foreground set, ΣF is the
covariance matrix for the foreground model, and Kfg is the normalization factor, analogous
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to Kbg. For efficiency, we compute the likelihoods by considering only samples that lie close
enough to ax to have significant probability density.

To account for the emergence of new objects in the scene, Sheikh and Shah add a uniform
distribution to the foreground likelihood. If PKDE(a|fg) is the foreground likelihood obtained
using a KDE from previous samples, the Sheikh and Shah foreground likelihood is

P(a|fg) = α× γ +(1−α)×PKDE(a|fg). (6)

γ is a uniform distribution with magnitude 1
R×G×B×X×Y , where R, G, and B, are the number

of possible intensities for red, green, and blue colors respectively, X and Y are the number of
columns and rows in the image, and 0≤ α ≤ 1 is a mixing factor.

The above uniform factor has a peculiar effect. When the size of an image is changed,
the uniform likelihood of observing a new foreground object changes. Increasing the size
of the image reduces the likelihood of seeing foreground objects. In contrast, we account
for appearance of new colors in the scene by placing a uniform distribution over color space
at each pixel location in the image, thus avoiding the above effect. Our previously unseen
foreground likelihood, P(c|fu,x), which models “new objects”, has a magnitude 1

R×G×B for
all locations x = (x,y) in the image.

2.3 Classification
In the Sheikh and Shah model, the classification of pixels is done based on the likelihood
ratios of the background and foreground processes. The decision criterion based on the
likelihood ratios of the five-dimensional likelihoods can be represented as

P(ac,ax|bg)
?
≷ P(ac,ax|fg)

P(ac|ax,bg)×P(ax|bg)
?
≷ P(ac|ax,fg)×P(ax|fg).

(7)

The classification decision hence depends on the factors P(ax|bg) and P(ax|fg). These fac-
tors are the prior probability of a particular pixel location given the background or foreground
label. For any pixel location ax, these factors can depend upon parts of the image that are
arbitrarily far away. This is because the prior likelihood of a given pixel location being
foreground will be smaller if more pixels from another part of the image are detected as
foreground, and larger if fewer pixels elsewhere are detected as foreground (since P(ax|fg)
must integrate to 1). Furthermore, these factors will change when the image size is changed,
hence affecting the classification. Our model avoids this drawback of the Sheikh and Shah
model by computing the posterior probability of the background label conditioned on the
pixel location. That is, our model does not have this arbitrary dependence on the size of the
image.

2.4 Location-specific priors for background and foreground processes
We define suitable priors for the three processes involved - background, previously seen
foreground, and unseen foreground. The classified pixel labels from the previous frame
can be used as a starting point for building the priors for the current frame. We assume
that a pixel that is classified as background in the previous frame has a 95% probability
of being background in the current frame as well. The pixel has a 2.5% probability of
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being one of the seen foreground objects, and a 2.5% probability of coming from a new
foreground object. For a foreground pixel in the previous frame, we assume that due to object
motion, there is a 50% probability of this pixel becoming background, a 25% probability of
this pixel belonging to the same foreground object as in the previous frame, and a 25%
probability that it becomes a new object. Note that the use of the term “new object” does not
necessarily mean that a new unseen object has appeared at that pixel location, but simply that
the color being observed at the pixel is not explained well by either the existing foreground
or background colors in the vicinity of the pixel and that a uniform color distribution best
explains the color. The reason a pixel may be classified as a “new object” could be that the
object position in the image has changed significantly compared to the previous frame or that
the object color appearance has changed due to motion.

The above scheme for informative priors is applied in a soft manner. For instance, a pixel
that has probability p of being background in the previous frame will have a background
prior equal to p× .95 + (1− p)× .5. Also, since objects typically move by a few pixels
from the previous frame to the current frame, we apply a smoothing (7× 7 Gaussian filter
with a standard deviation value of 1.75) to the classification results from the previous frame
before computing the priors for the current frame. Let P̃t−1(bg) be the smoothed background
posterior image from the previous frame. The priors for the current frame are

P(bg|x) =P̃t−1(bg|x)× .950+(1− P̃t−1(bg|x))× .500

P(fg|x) =P̃t−1(bg|x)× .025+(1− P̃t−1(bg|x))× .250

P(fu|x) =P̃t−1(bg|x)× .025+(1− P̃t−1(bg|x))× .250.

(8)

The posterior probability for the background label given a pixel a is

P(bg|a) =
P(ac|bg,ax;ΣB)×P(bg|ax)

∑l=bg,fg P(ac|l,ax;Σl)×P(l|ax)+P(ac|fu,ax)×P(fu|ax)

P(fg|a) = 1−P(bg|a).
(9)

Note that mixing a uniform distribution to the foreground likelihood with a factor α to ac-
count for new objects, as done by Sheikh and Shah, is equivalent to our method of treating
the existing foreground objects and new foreground objects as separate processes with their
own likelihoods and priors. However, the use of explicit priors allows our system to be ex-
tended more easily. For instance, at the image boundary regions, we can use a higher prior
for unseen foreground to model the higher probability of new objects entering the scene from
outside the camera’s field of view.

3 Adaptive kernels for background modeling

Narayana et al. [5] showed recently that in kernel estimate based background modeling, us-
ing an adaptive pixel-wise kernel improves results significantly. For each pixel location, for
the background model, a set of variance values for both spatial and color dimensions is tried
and the configuration that results in the highest likelihood is chosen for that particular pixel.
Mathematically, the likelihood and normalization factor Equations 3 and 4 now include a
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location-specific covariance matrix:

P(ac|bg,ax;Σ
Bax
range,Σ

Bax
domain)=

1
Kbg

nB

∑
i=1

G(ac−bic;Σ
Bax
range)G(ax−bix;Σ

Bax
domain)P(bg|bi),

Kbg =
nB

∑
i=1

G(ax−bix;Σ
Bax
domain)P(bg|bi),

(10)

where Σ
Bax
domain and Σ

Bax
range represent the location-specific spatial and color dimension vari-

ances at location ax. For each pixel location ax, the optimal variance for the background
process is selected by maximizing the likelihood of the background at pixel a under different
variance values:

{σ
Bax
domain

∗
,σ

Bax
range

∗
}= arg max

σ
Bax
domain,σ

Bax
range

P(ac|bg,ax;Σ
Bax
range,Σ

Bax
domain). (11)

Here, σ
Bax
domain ∈ RB

domain and σ
Bax
range ∈ RB

range. RB
domain and RB

range represent the set of spatial
and color dimension variances from which to choose the optimal variance. These constitute
the diagonal elements in the covariance matrices Σ

Bax
domain and Σ

Bax
range.

4 Results
We present results on I2R videos [3], a standard data set with nine videos taken in different
settings. The videos have several challenging features like moving leaves and waves, strong
object shadows, and moving objects becoming stationary for a long duration. Each video
has 20 frames for which the ground truth has been marked. We use the F-measure to judge
accuracy [4]. As done by Narayana et al., we use a Markov random field (MRF) to post-
process the labels and also discard any foreground detections smaller than 15 pixels in size.

In order to study the effects of the different normalizations of Equations 2 and 4, which
represent the difference between the Sheikh and Shah model and ours, we present results
of our background classification system for both normalization procedures. Table 1 shows
the results comparing the two normalization schemes for different settings of spatial and
color covariances in our system. The columns are labeled ‘a’ and ‘b’ referring to the Sheikh
and Shah model and our model respectively. The table shows that using a pixel-wise model
results in a higher accuracy than the Sheikh and Shah model for all parameter settings except
one.

Table 1 also shows that using the adaptive kernel variance for the background improves
accuracy in our model. Interestingly, the adaptive kernel variance reduces the accuracy when
using the Sheikh and Shah normalization. Figure 1 shows images that characterize the per-
formance of the two normalization schemes and the effect of using adaptive kernel variance
in both schemes (corresponding to the columns 3a, 3b, 4a, and 4b in Table 1). We see that
the Sheikh and Shah normalization (Figure 1b) causes many foreground pixels to be misclas-
sified as background. This is because Equation 2 is biased towards whichever process has a
smaller spatial neighborhood - the background process in this case. If the neighborhood is
large, pixel samples that are spatially far away contribute little to the numerator, but heavily
to the denominator. Figure 2 illustrates this phenomenon with a synthetic example. Consider
that a red foreground object was present in front of a pink background in the previous frame
and that the foreground pixel samples from this image are used to compute the foreground
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Column num (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b)
4*σB

domain −→ 3 3 3 3 3 3 [1 3] [1 3]
4*σB

range −→ 15 15 45 45 45 45 [5 15 45] [5 15 45]
4*σF

domain −→ 3 3 3 3 12 12 [12] [12]
4*σF

range −→ 15 15 45 45 45 45 [15] [15]
AirportHall 48.91 53.64 65.70 66.37 70.13 67.95 65.52 68.28
Bootstrap 56.16 58.90 65.32 66.96 71.77 69.17 71.38 71.86
Curtain 49.79 49.96 69.55 71.22 87.34 85.66 79.76 93.57
Escalator 25.10 35.32 42.54 53.01 53.70 54.01 54.02 66.37
Fountain 52.07 56.02 58.84 59.00 57.35 77.11 49.89 77.43
ShoppingMall 58.97 62.67 67.23 70.28 74.12 70.95 74.43 76.46
Lobby 23.90 23.27 23.56 22.55 27.88 21.64 33.34 13.24
Trees 48.22 62.35 75.22 78.35 85.80 82.61 85.57 83.88
WaterSurface 46.61 46.78 57.76 55.63 78.16 75.80 64.03 93.81
Average 45.53 49.88 58.41 60.37 67.62 67.21 64.22 71.66

Table 1: F-measure for Sheikh and Shah model (left) and our model (right) for different
kernel variances. Columns 4a and 4b correspond to the adaptive variance procedure with
variance values given in brackets. Bold entries correspond to the higher of the two values
for a given parameter setting. For all but one parameter setting, the pixel-wise model (ours)
is more accurate than the Sheikh and Shah model for most videos. Blue entries correspond
to the best F-measure for each video. Using our model with adaptive variance results in the
highest accuracy for most videos.

likelihoods at each pixel in the current frame. For simplicity, we consider the case where the
object has not moved from the previous frame to the current. Applying the Sheikh and Shah
normalization scheme, we see that as the size of the neighborhood for foreground samples is
increased from 1 to 3, the likelihood values for the foreground pixels decrease dramatically
(compare Figures 2c and d). Using our normalization method, the dependence between the
spatial neighborhood and likelihood values is eliminated (Figures 2e and f).

In our normalization scheme, since the denominator term weights each sample’s proba-
bility by its spatial distance, the likelihood equations 3 and 5 are not inherently biased based
on the spatial neighborhood of the processes. However, the undesirable effect of our normal-
ization is that there are more false positive foreground classifications (Figure 1c, row 1) and
once a region is classified as foreground, it tends to remain classified as foreground (1 c, row
3). In light of this observation, it is obvious why using the adaptive kernel method for the
background process helps our model ( Figure 1e). The adaptive kernel for the background
process, by selecting the best of the available kernel variances, in effect “tries hard” to clas-
sify each pixel as background. For instance, background pixels that have been occluded by a
foreground object for many frames can correctly be recovered when the object moves away
by matching the revealed pixel colors to nearby background locations using a larger spatial
kernel. In effect, the kernel adaptation allows the background to “spread” back into a region
that has recently been foreground. When a pixel is not well explained by the background
model despite the selection procedure, it gets labeled as foreground. In contrast, the adaptive
procedure hurts the performance of the Sheikh and Shah model because it tends to further
bias the decision towards the background label (Figure 1d).

With our probabilistic model, we can interpret the effect of the adaptive kernel variance
method of Narayana et al. more easily in Figures 3 and 4. Consider a synthetic scene with
no foreground objects, but in which the colors in the central greenish part of the background
have been displaced at random by one or two pixel locations to simulate spatial uncertainty.
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Figure 1: Comparing the effect of adaptive kernel variance for the Sheikh and Shah normal-
ization versus our normalization method. The Sheikh and Shah method has a bias towards
background label (b), further exacerbated by the adaptive kernel selection (d). Our method
tends to classify foreground objects well, but has more false positive foreground pixels (c).
Adaptive kernel variance with our normalization yields best results (e).

Figure 2: Sheikh and Shah normalization equation leads to a dependency between neighbor-
hood size and likelihood values. Our normalization does not.

As shown in Figure 3, the adaptive kernel variance method models the scene better by apply-
ing a high spatial variance for pixels that have moved and a low spatial variance for pixels
that have not moved. Similarly, for color variance, Figure 4 shows the resulting likelihoods
when uniformly sampled noise is added to the color values in the central part of the image. A
small color variance value results in low likelihoods for pixels whose colors have changed. A
large color variance results in low likelihoods for pixels that have not changed. The adaptive
kernel variance method performs well in both kinds of pixels.

Table 2 shows F-measure values for different methods on the I2R data set. The mixture
of Gaussians (MoG) method [8] is a commonly used baseline method. Scale invariant local
ternary patterns (SILTP) [4] are effective texture features that are robust to lighting changes
in the scene. The variable kernel score (VKS) method [5] uses an adaptive kernel variance
method for each pixel location in the image and achieves the best results reported on this
data set. Following the same scheme as Narayana et al., we present results from two ver-
sions of our system - one called DFB-rgb using RGB color features only and another called
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Figure 3: (a) and (b) Spatial uncertainty in the central part of the background. (c) Small
uniform variance results in low likelihoods for pixels that have moved. (d) Large uniform
variance results in higher likelihoods of the moved pixels at the expense of lowering the
likelihoods of stationary pixels. (e) Adaptive variance results in high likelihoods for both the
moved and stationary pixels.

Figure 4: Color uncertainty in the central part of the background is best modeled by using
adaptive kernel variances. (c) Small uniform variance results in low likelihoods for pixels
that have changed color. (d) Large uniform variance results in higher likelihoods of the
altered pixels at the expense of lowering the likelihoods of other pixels. (e) Adaptive variance
results in high likelihoods for both kinds of pixels.

DFB-lab+siltp using a hybrid of LAB color space and SILTP texture (computed at 3 scales)
features. The parameters used for the variable kernel method are the same as those used in
Narayana et al. We see that our DFB method performs better than SILTP on most videos and
is comparable to the accuracy of VKS. However, DFB has the advantage of being a simpler
model that can be better understood in probabilistic terms.

5 Conclusions
We have highlighted some of the issues with modeling the background using a single joint
domain-range distribution as done by Sheikh and Shah. By instead extending the domain-
range representation to model distributions conditioned on each pixel location, we address
these issues. In addition, we incorporate spatial priors for the background and foreground
processes by using classification labels from the previous frame. Our background and fore-
ground likelihood models are conceptually easier to interpret than the foreground and back-
ground scores of Narayana et al. Our model’s accuracy is comparable to theirs and also
explains better the effect of using the adaptive kernel variance for each pixel location. For
future work, the foreground priors can be modeled more accurately by including the objects’
tracking information. Integrating the background modeling with object tracking may result
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Video MoG SILTP [4] VKS VKS DFB DFB
rgb lab+siltp rgb lab+siltp

AirportHall 57.86 68.02 70.44 71.28 68.28 70.75
Bootstrap 54.07 72.90 71.25 76.89 71.86 77.64
Curtain 50.53 92.40 94.11 94.07 93.57 94.07
Escalator 36.64 68.66 48.61 49.43 66.37 49.99
Fountain 77.85 85.04 75.84 85.97 77.43 85.88
ShoppingMall 66.95 79.65 76.48 83.03 76.46 82.64
Lobby 68.42 79.21 18.00 60.82 13.24 62.60
Trees 55.37 67.83 82.09 87.85 83.88 87.64
WaterSurface 63.52 83.15 94.83 92.61 93.81 93.79

Table 2: F-measure on I2R data. DFB is better than SILTP and comparable to VKS.

in significant improvement in the accuracy of the classification.
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