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Background subtraction, often a first step in segmenting moving ob-
jects in videos, is most commonly achieved by modeling the background
color likelihoods at each pixel. Stauffer and Grimson [4] use a parametric
Gaussian mixture model to estimate the likelihoods at each pixel. A non-
parametric model was introduced by Elgammal et al. [1], where the likeli-
hoods at each pixel are modeled using a kernel density estimate (KDE) by
using the data samples from previous frames in history. These pixel-wise
models do not allow for the observations at one location to influence the
estimated distribution at a different but nearby location. By including each
pixel’s position information and modeling the likelihoods using a five-
dimensional distribution in a joint domain-range representation, Sheikh
and Shah [3] allow pixels in one location to influence the distributions in
another location. They show that this sharing of spatial information leads
to more accurate background subtraction. Their background model is a
single distribution in the joint domain-range space. As we will see in this
paper, their classification criterion, based on the ratio of likelihoods in this
five-dimensional space, has an undesirable dependence on the size of the
image. Like Sheikh and Shah, we model the foreground and background
likelihoods with a KDE using pixel samples from previous video frames.
However, we model the processes using a three-dimensional color distri-
bution at each pixel. Our distributions are conditioned on spatial location,
rather than being joint distributions over position and color. Our modeling
avoids the dependence on the image size and yields better results.

Recent work on KDE based background modeling by Narayana et
al. [2] has shown that adapting the kernel variance values for each pixel
yields significantly better results than using a uniform kernel variance for
all pixels. At each pixel location, the best kernel variance is selected
from a set of candidate variances. Although we use a similar approach
for adapting the kernel variance at each pixel, our background and fore-
ground likelihood models are conceptually easier to interpret than their
foreground and background scores. We show through both synthetic and
real data examples that the adaptive kernel variance scheme is useful.
With our probabilistic model, we can understand the effect of the adap-
tive kernel variance method of Narayana et al. more easily, as shown in
Figures 1 and 2.

Another improvement we present over earlier approaches is the use of
explicit spatial priors for the background and foreground processes. We
use the foreground-background classification from the previous frame to
estimate the prior probability for the processes. Our probabilistic formu-
lation with likelihoods and a spatially dependendent prior for each process
leads to a posterior distribution over the processes.

Figure 3 shows images that characterize the performance of the Sheikh
and Shah model compared to ours and the effect of using adaptive ker-
nel variance in both models. Benchmark comparisons on a standard data
set show that our system’s performance is comparable to the results of
Narayana et al., which are the best reported results on our chosen bench-
mark. The advantage of our model over that of Narayana et al., is that
our probabilistic model is more intuitive. The results from our model can
be understood more clearly and the various constants and factors in the
model can be interpreted more meaningfully.
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Figure 1: Consider a synthetic scene with no foreground objects, but to
simulate spatial uncertainty, the colors in the central greenish part of the
background in the previous frame (a) have been displaced at random by
one or two pixel locations in the current frame (b). (c) Computing the
background likelihoods at each location in the current frame with pixel
samples from the previous frame using a small uniform variance results
in low likelihoods for pixels that have moved. (d) Large uniform variance
results in higher likelihoods of the moved pixels at the expense of lower-
ing the likelihoods of stationary pixels. (e) Adaptive variance results in
high likelihoods for both the moved and stationary pixels by applying a
high spatial variance for pixels that have moved and a low spatial variance
for pixels that have not moved.

Figure 2: Uniformly sampled noise is added to the color values in the cen-
tral part of image (a) to result in image (b). Color uncertainty in the cen-
tral part of image (b) is best modeled by using adaptive kernel variances.
(c) Small uniform variance results in low likelihoods for pixels that have
changed color. (d) Large uniform variance results in higher likelihoods
of the altered pixels at the expense of lowering the likelihoods of other
pixels. (e) Adaptive variance results in high likelihoods for both kinds of
pixels.

Figure 3: Comparing the effect of adaptive kernel variance for the Sheikh
and Shah model versus our model. The Sheikh and Shah method has
a bias towards background label (b), further exacerbated by the adaptive
kernel selection (d). Our method tends to classify foreground objects well,
but has more false positive foreground pixels (c). Adaptive kernel vari-
ance with our normalization yields the best results (e).The adaptive kernel
for the background process, by selecting the best of the available ker-
nel variances, in effect “tries hard” to classify each pixel as background.
When a pixel is not well explained by the background model despite the
selection procedure, it gets labeled as foreground.


