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Abstract

The recently reported KinectFusion algorithm uses the Kinect and GPU algorithms
to simultaneously track the camera and build a dense scene reconstruction in real time.
However, it is locked to a fixed volume in space and can not map surfaces that lie outside
that volume. We present moving volume KinectFusion with additional algorithms to
automatically translate and rotate the volume through space as the camera moves. This
makes it feasible to use the algorithm for perception in mobile robotics and other free-
roaming applications, simultaneously providing both visual odometry and a dense spatial
map of the local environment. We present experimental results for several RGB-D SLAM
benchmark datasets and also for novel datasets including a 25m outdoor hike.

1 Introduction
Many tools have been applied to the problem of accurate perception in 3D environments,
including stereo cameras, laser range finders, depth cameras, and monocular cameras. One
new tool that is now being explored is the Microsoft Kinect, a consumer depth camera made
for gaming which can give as good or better data than more expensive solutions even as the
sensor moves. While successive unaligned depth frames could be used directly for some
perception tasks, in many uses it is necessary to spatially align and integrate the data as the
camera moves. For example, a rough terrain walking robot needs to know about the ground
under its feet, but the legs and feet themselves would obstruct downward facing cameras [10].

The alignment and integration problem has mainly been studied in the context of sparse
SLAM-based methods [8]. Newcombe and Izadi et al’s KinectFusion [11, 13] is an impres-
sive new algorithm for real-time dense 3D mapping using the Kinect. It is geared towards
games and augmented reality, but could also be of great use for robot perception. However,
the algorithm is currently limited to a relatively small volume fixed in the world at start up
(typically a ∼ 3m cube). This limits applications for perception.

Here we report moving volume KinectFusion with additional algorithms that allow the
camera to roam freely (Section 2). We are interested in perception in rough terrain, but
the system would also be useful in other applications including free-roaming games and
awareness aids for hazardous environments or the visually impaired.

So far we have collected a total of 18 rocky terrain datasets comprising over 32k frames
(18.1min) and an estimated 662m path length. (Though the Kinect cannot cope with direct
sunlight it does work outdoors on a reasonably overcast day.) The richness of 3D depth
features makes moving volume KinectFusion work very well on rocky terrain—no camera
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tracking failures were incurred, and reconstructed surfaces from the TSDF appear to be very
high quality (quantitative analysis of the reconstructed geometry is still future work).

The processing requirements of our approach are similar to those of the original algo-
rithm, which to the best of our knowledge can currently require a high-end desktop-class
GPU to process data in real time. So while we can collect free-roaming datasets for later
processing (Section 3), we have not yet achieved mobile KinectFusion.

We present experimental results (Section 4) for three datasets with ground truth from the
TUM RGB-D SLAM dataset repository [18] and three new datasets we collected, including
a 25m outdoor hike. We found the system to perform well as a combined visual odometry
and dense local mapping algorithm. (Though it is possible to track the global camera pose,
it drifts over time because no loops are explicitly closed.) We based our implementation on
the open-source Kinfu code that has recently been added to the Point Cloud Library (PCL)
from Willow Garage [15], and we have submitted our code for inclusion there as well.

1.1 Review of KinectFusion and Related Work

KinectFusion [11, 13] integrates depth maps from the Kinect into a truncated signed distance
formula (TSDF) representation [3]. The TSDF is discretized into a voxel grid, typically
512×512×512, that represents a physical volume of space (e.g. a 3m cube). Each voxel v
contains two numbers: a signed distance d indicating how far that cell is from a surface and
an integer weight w representing confidence in the accuracy of the distance. If d < 0 then
v is “inside” a surface; if d > 0 then v is “outside” the surface. Only depth values within a
truncation band−T < d < T are stored (a typical value is T = 0.03m); the remaining voxels
are sentinels with either w = d = 0 (uninitialized) or d = T (empty space). The actual world
surfaces are encoded as the zero crossings of the distance field and can be extracted by ray
casting or marching cubes.

The computational expense of this approach is mitigated by a highly parallelized imple-
mentation on newly available GPUs with up to 512 or more floating point cores and several
GB of memory. The original algorithm can typically process each new frame in well under
the ∼ 30ms available before the next frame arrives. (Though the Kinect provides both RGB
and depth images, only the depth data is used here.)

As the Kinect moves each new depth frame is used to incrementally localize its pose
within previously observed geometry using the generalized iterative closest point algorithm
(GICP) [17] with projective data association. The new readings are then integrated by sweep-
ing through the TSDF: every cell which would appear in the camera is updated based on the
previously stored values and the new depth map using a projective distance metric.

We recently learned that two other groups are also developing alternative approaches to
translate the KinectFusion volume [9, 20]. A key distinction of our method is the ability to
rotate the volume in addition to translation. Since the volume is rectilinear this can be useful
to control its orientation, e.g. to maximize overlap of the camera frustum or to align the vol-
ume with task-relevant directions, such as the average ground surface normal in locomotion.

Beyond KinectFusion, Klein and Murray’s parallel tracking and mapping (PTAM) sys-
tem [12], and the more recent dense tracking and mapping (DTAM) reported by Newcombe
et al [14], are both impressive. Instead of the Kinect they use a monocular camera, which has
both advantages and disadvantages. Also highly related are visual and RGB-D (color+depth)
SLAM [4] and visual odometry [10, 16] algorithms.
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2 Moving Volume KinectFusion
KinectFusion works for fixed spaces, but in its original form it is not suitable for use with a
widely moving sensor. The TSDF volume is mapped to an absolute volume in the world. Our
approach allows the algorithm to handle a volume that moves arbitrarily on-line (Figure 1).

Figure 1: Remapping to hold the sensor pose fixed relative to the TSDF volume. Raycast
images before and after a remapping show a third step coming into view as the volume moves
forward. A reconstruction of the volume and camera poses shows that the volume-to-volume
transform is calculated to maintain the camera at the rear center of the volume.

With our algorithm in place, the “absolute” camera pose Cg, a 4× 4 rigid transform
expressing the current camera pose in the very first volume frame, can be calculated at any
time t as

Cg = P0 · · ·Pvf(t)Ct (1)
where Ct is the current camera tracking transform from KinectFusion taking camera coordi-
nate frame to its parent volume frame, each Pi>0 takes volume frame i to volume frame i−1,
P0 = I3×3, and vf(t) is a bookkeeping function that maps a depth image timestamp to the
index of its parent volume. (Volume frames are generally sparser than camera frames.)

Moving volume KinectFusion both tracks global camera motion (equation 1) and simul-
taneously builds a spatial map of the local surroundings. However, this is not a true SLAM
algorithm as it does not explicitly close large-scale loops and will inevitably incur drift over
time. Rather, it can be considered a 6D visual odometry approach in that the camera pose
aCb at any time b relative to an earlier time a is

aCb =C−1
a Pvf(a+1) · · ·Pvf(b)Cb. (2)

Of course the significant additional benefit beyond visual odometry alone is that a map of
local environment surfaces is also always available in the current TSDF.

After the GICP tracking phase gives the current local camera pose Ct we determine if a
new volume frame is needed by calculating linear and angular camera offsets ld ,ad relative
to a desired local camera pose Cs.

D =

[
Rd td
0 1

]
=C−1

s Ct , Ct =

[
Rt tt
0 1

]
, ld = ‖td‖, ad = ‖rodrigues−1(Rd)‖ (3)

A new volume frame is triggered if ld > lmax or ad > amax. We typically use

lmax = 0.3m,

amax = 0.05rad,
Cs =

[
I3×3 ts

0 1

]
, ts =

[
Wm/2
Hm/2
−Dm/10

]
for volume Wm,Hm,Dm meters (4)

which is the default initial camera pose for Kinfu. This keeps the camera centered just be-
hind the volume (Figure 1, right; note that the origin of each volume frame is the upper left
corner of the volume with x̂ right, ŷ down, and ẑ pointing into the page). Other strategies
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for determining Cs may make sense—for example keeping the camera centered in the vol-
ume, orienting the volume to task-relevant directions—but are subject to the practical (and
application dependent) constraint that the camera must see scene surfaces within the volume.

To introduce a new volume frame we remap [2] the new volume from the old. We
maintain a swap buffer in GPU memory the same size as the TSDF buffer for this; memory
requirements for this large data structure are thus doubled but still feasible on current GPUs.
After the remap the buffers are swapped and a new relative volume transform Pn+1 is set as

Pn+1 =CtC−1
t+1 (5)

where Ct+1 is the new camera transform. Conceptually Ct+1 =Cs, though we allow an offset
in some cases as described in Section 2.1.

The core idea of remapping is to interpolate TSDF (d,w) values in the old volume at
a grid of points corresponding to the samples (here the voxel centers) of the spatially ro-
tated and translated new volume. (Points outside the old volume get the sentinel (0,0).)
Remapping—sometimes called reslicing for the 3D case—has been studied for medical im-
ages [7], but speed is often sacrificed for accuracy. Efforts have been made to improve the
speed [5], but generally reslicing has not been done in real time. Here we require a fast
parallel algorithm which is tuned for common-case TSDF data.

Our approach is hybridized in two ways (Algorithm 1). First, if ld > lmax but ad ≤ amax
we use a fast and exact memory shift algorithm (Algorithm 2), otherwise we use a more
traditional resampling (Algorithm 3). Second, during resampling we take advantage of the
fact that in the common case much of the TSDF is either uninitialized or marked “empty”:
we do a nearest-neighbor lookup first, and only if that is within the truncation band do we
continue with a more expensive (in this context) 2×2×2 trilinear interpolation (Section 2.3).

Algorithm 1 Hybrid TSDF remapping.

function VOLUMEREMAP(rot R ∈ SO(3), trans t ∈ R3, orig vol Va, new vol Vb)
if ‖rodrigues−1(R)‖> amax then VOLUMEINTERP(R, t,Va,Vb)
else if ‖t‖> lmax then VOLUMESHIFT(round(t),Va,Vb)

2.1 Volume Shift (Translation Only)
When the TSDF is translated by integer voxel units no interpolation is needed. Data that gets
moved outside the volume is lost, but the remaining data is copied exactly, not approximated.

For each camera pose we calculate ld and ad as in (3) and if ld > lmax but ad ≤ amax we
trigger a volume shift. The new camera pose and volume transform are

Ct+1 =

[
Rt tt − round(ts)
0 1

]
, Pn+1 =

[
I3×3 round(ts)

0 1

]
(6)

We copy memory from Va to each x,y plane of Vb in parallel. (This could be done in-
place but we need the swap buffer anyway for full remaps.) We found that synchronizing all
threads before completing each plane helps performance by optimizing memory cache hits
since each plane is stored contiguously.

2.2 Volume Remap (Arbitrary Rotation and Translation)
When ad > amax a full interpolating remap is required. In this case
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Algorithm 2 Voxel shift algorithm for translating a TSDF.

function VOLUMESHIFT(translation t ∈ Z3, original volume Va, new volume Vb)
both volumes are Wv×Hv×Dv voxels
for k = 0 to Dv−1 do . synchronize before each plane to optimize cache hits

for each v ∈ [0 . . .Wv)× [0 . . .Hv)×{k} ⊂ Z3 in parallel do
v′← v+ t
if v′ ∈ [0 . . .Wv)× [0 . . .Hv)× [0 . . .Dv) then Vb(v)← Va(v′)
else Vb(v)← (0,0)

swap(Vb,Va) . O(1) pointer swap

Ct+1 =Cs, Pn+1 =CtC−1
s . (7)

The interpolating remap is significantly slower than shift by memory copy, both due to the
added math for interpolation and especially the greatly increased memory bandwidth as mul-
tiple voxels in a neighborhood need to be fetched for each sample point. Memory address
locality is not as easily exploited due to the rotation. (It may be possible to use GPU texture
fetch hardware, which has specialized caching for 2D arrays, but it is unclear to what extent
this will also benefit 3D arrays.) Finally, as for any resampling, approximations are inherent.

Algorithm 3 Voxel interpolation for rotating and translating a TSDF.

function VOLUMEINTERP(rot R ∈ SO(3), trans t ∈ R3, orig vol Va, new vol Vb)
both volumes are Wv×Hv×Dv voxels
for each (i, j) ∈ [0 . . .Wv)× [0 . . .Hv)⊂ Z2 in parallel do

for k = 0 to Dv−1 do
v ∈ Z3← (i, j,k), w ∈ R3← Rv+ t, v′ ∈ Z3← bwc
if both v′ and (v′+1) in [0 . . .Wv)× [0 . . .Hv)× [0 . . .Dv) then

n ∈ Z3← round(w)
if Va(n) is a sentinel then Vb(v)← Va(n) . see text
else Vb(v)← trilinearly interpolate Va({v′+o}) for o ∈ [0,1]3 ⊂ Z3

else Vb(v)← (0,0)
swap(Vb,Va) . O(1) pointer swap

2.3 Fast TSDF Interpolation
The distance, weight (d,w) pairs stored at each voxel in the TSDF fall into three categories:

uninitialized: d = 0,w = 0; empty: d = T,w > 0; in-band: −T < d < T,w > 0. (8)

The first two are sentinels indicating respectively that nothing is known yet about the voxel or
that the voxel was traversed only by camera rays beyond distance T from a surface, measured
projectively along the ray. (Recall that T is the truncation band half-width.) There are
fundamental discontinuities in the TSDF between voxels of each type.

Noting that the remapping inner loop is memory bandwidth bound, we first tried sim-
ple nearest-neighbor resampling. This was relatively fast but usually insufficient; while it
does not “smear” the discontinuities, the resulting quantization quickly corrupts the TSDF
truncation band enough to cause tracking failures and obvious geometric artifacts.
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Trilinear interpolation requires 8 fetches for the 2×2×2 neighborhood of each sample
point, and is thus more expensive, but it significantly reduces artifacts in the truncation band.
It may smear discontinuities between voxels of different types, but we found that the algo-
rithm seems robust to such corruption. Some geometric artifacts (“marshmallowing”) can
develop after numerous large rotations, but we have not observed tracking failures clearly
due to this, and in practical use cases like walking or hiking the effect appears small.

Reasoning that in typical scenes large portions of the TSDF will be uninitialized or
empty, we created a hybrid interpolant to first check if the nearest neighbor is a sentinel
and early-out if so. This gave a 43% speedup across all datasets, though it sometimes intro-
duces further artifacts which manifest as “holes” in recovered surfaces. We found them to
be minimal in most cases, though noticeable in some datasets with fast camera motions.

3 Datasets
We present results on 6 datasets, three from the RGB-D SLAM repository [18] and three
which we recorded ourselves. Figure 2 shows some highlights. Each dataset consists of a
sequence of 640×480 depth frames from a Kinect at the full framerate of ∼ 30Hz.

Figure 2: Left: stairs dataset with some of the moving volumes; inset shows inability of
original Kinfu to track beyond the first volume (two later volumes mark camera tracking
failures). Middle: freiburg2_desk dataset from the RGB-D SLAM repository [18]; here only
the coordinate axes are drawn for volumes after the first. Right: spatial camera tracks aligned
with the tool from [18] for freiburg2_desk (top) and freiburg1_room (bottom).

3.1 RGB-D SLAM Benchmarks
The RGB-D SLAM dataset repository [18] is an openly available collection of datasets pre-
pared by the CVPR group at TUM for testing and comparison of SLAM algorithms based on
combined color (RGB) and depth cameras like the Kinect. We selected three datasets which
have corresponding mocap-based ground truth data:

freiburg1_xyz View of a desktop scene. (798 frames, 30s, 7.1m traveled)
freiburg2_desk Orbiting view of a desktop. (2964 frames, 99s, 18.9m traveled)
freiburg1_room Tour of a small room. (1360 frames, 48s, 16.0m traveled)

All three were captured indoors with a handheld Kinect. The original Kinfu implementation
is appropriate for the first two, enabling direct comparisons with moving volume KinectFu-
sion, but cannot handle the last due to extended camera motion.
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3.2 Mobile Data Collection
The Kinect is normally constrained by a tether to wall power. Though some projects have
used it on mobile robots [1, 6, 19], we are not aware of others who have adapted it for free-
roaming handheld use. To this end we developed a simple system, shown in Figure 3, where
the Kinect is powered by a lithium polymer battery, a tablet is attached to its back to provide
a “heads-up” display, and a closed-lid laptop computer carried in a shoulder bag runs data
collection software that stores all RGB and depth images to an SSD. This setup allows one
person to conveniently hold and aim the Kinect, simultaneously control and monitor the data
capture with the tablet, and walk freely without the constraint of any power cord.

Our system allows the collection of data in environments and scenarios that have usually
been beyond the reach of the Kinect. As our group is especially interested in bipedal loco-
motion on rocky terrain, we are particularly interested to capture data outdoors. While it is
generally understood that the Kinect does not work well in outdoor sunlight, we have found
that it works fine on a moderately overcast day. Figure 3 shows an example of data collection
outdoors in natural terrain, here a 25m hike up a rocky hill.

Figure 3: Our heads-up data collection system outdoors. The hill dataset is 25m long; screen-
shots are raycast terrain reconstructions from moving volume KinectFusion.

We collected three new datasets with this system; the original Kinfu implementation
cannot handle any of these due to the free-roaming camera motion:

stairs A climb up two staircases in a hallway. (1313 frames, 44s, 11.3m est traveled)
hallway A stroll forward through a hallway. (1766 frames, 59s, 11.2m est traveled)
hill A hike up a rocky slope. (1109 frames, 37s, 25.1m est traveled)
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The first two were captured indoors and the last outdoors. Path lengths are estimated from
the moving volume KinectFusion reconstruction of the camera path.

4 Results
We measured the performance and tracking accuracy of our algorithm, comparing it with
the original Kinfu implementation and with ground truth and reference results for RGB-D
SLAM [4] where applicable. All results were measured using the typical values for lmax,
amax, and Cs given in Section 2. We have not yet quantitatively analyzed the geometric
surface reconstructions; qualitatively they seem nearly as good as the original Kinfu output,
with some degradations as noted in Section 2.3 above.

4.1 Performance
Table 1 gives processing times for each dataset with our algorithm enabled and disabled
where possible. Tests were performed on an Intel Xeon W3520 processor (4 cores, 12GB
RAM, 2.8GHz) and an NVidia GeForce GTX580 GPU (512 cores, 3GB RAM, 1.5GHz).

We also accounted the volume shifts and remaps. As expected the shifting is much faster
(and also more predictable) at 6ms in every instance. The interpolating remap can take up to
about 22ms, but averages about 15ms. Because the original Kinfu implementation can take
up to 26ms per frame, true real-time performance is not attained as only∼ 33ms are available
between frames. However, only a small minority of frames require remaps so it is feasible to
introduce a fixed-size frame queue (the alternative of dropping frames significantly reduced
accuracy in our tests); the maximum observed latency was 14ms.

ms/frame latency volume shifts volume remaps
Dataset Kinfu avg max max ms num avg ms max ms num avg ms max ms
stairs origa 21.1 26 – – – – – – –
stairs mvol 25.7 46 12 9 6 6 81 16.2 21
fb1_xyz orig 22.1 24 – – – – – – –
fb1_xyz mvol 23.8 38 4 0 – – 99 12.5 14
fb2_desk orig 24.1 26 – – – – – – –
fb2_desk mvol 25.1 46 12 2 6 6 228 16.7 21
hallway mvol 25.6 47 14 6 6 6 166 16.2 22
hill mvol 25.5 40 7 22 6 6 151 12.6 14
fb1_room mvol 28.3 44 10 0 – – 469 13.8 19

aTwo camera tracking failures and subsequent resets.
Table 1: Runtimes for original KinectFusion and moving volume KinectFusion. The original
algorithm was not measured on the latter three datasets as it incurred too many tracking
failures due to a widely roaming camera. The fb (freiburg) datasets are from the RGB-D
SLAM repository [18]. See text for machine configuration and runtime parameters.

4.2 Accuracy
We measured the tracking accuracy of moving volume KinectFusion on the three datasets
for which ground truth was available, and we also compared with reported results for the
RGB-D SLAM algorithm and with the original Kinfu implementation where possible. All
of these results were enabled by the excellent data developed by the TUM CVPR group [18].
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We report both absolute and relative errors. Absolute error is the distance between esti-
mated and ground truth camera locations after rigidly aligning the trajectories. Relative error
is the difference between (a) the relative pose aCb (equation 2) for times a and b = a+1s in
the estimated trajectory and (b) the ground-truth relative pose from a to b. The former mea-
sures accuracy in a SLAM context where drift-free global alignment is expected; the latter
does not penalize accumulation of drift and so is a better test for visual odometry alone.

The results indicate that the tracking accuracy of moving volume Kinect Fusion can
compare favorably with the original algorithm; i.e. at least we have not obviously broken
functionality where the original algorithm was sufficient to handle the camera motion.

For absolute error RGB-D SLAM outperforms moving volume Kinect Fusion, which is
to be expected because we are not closing loops. Our approach fares better in the relative er-
ror measures, i.e. it performs reasonably well when considered a visual odometry algorithm.

abs err [m] rel err [m] rel err [deg]
Dataset Algorithm RMS max RMS max RMS max
fb1_xyz kinfu 0.021 0.070 0.029 0.069 1.7 4.4
fb1_xyz mvkinfu 0.019 0.049 0.026 0.063 1.7 4.5
fb1_xyz rgbdslam 0.013 0.035 0.021 0.048 0.9 2.3
fb2_desk kinfu 0.095 0.254 0.026 0.127 1.2 6.2
fb2_desk mvkinfu 0.117 0.331 0.020 0.070 0.8 2.6
fb2_desk rgbdslam 0.095 0.146 0.017 0.092 0.7 3.0
fb1_room mvkinfu 0.196 0.402 0.070 0.218 2.9 7.8
fb1_room rgbdslam 0.101 0.437 0.095 0.558 3.2 14.0

Table 2: Tracking errors for datasets with ground truth from [18], analyzed with the tools
from [18]. The original algorithm could not handle the last set. See text for definitions.

5 Future Work
We are aiming to use moving volume KinectFusion for mobile robot perception in natural
terrain, including orienting the volume according to the terrain slope, gravity vector, and
current heading. With a rectangular volume which allocates less voxels vertically and more
horizontally this could increase the horizon available for locomotion planning. Another
important next step will be the ability to use sensors other than Kinect in bright sunlight.

We also continue to optimize the code; for example it may be possible to use texture
hardware on the GPU to accelerate neighborhood fetching and interpolation (though for this
it may be necessary to alter the TSDF memory format). If sufficient speedups are found,
and as GPU hardware—and our understanding of it—improves, it will also be interesting to
experiment with higher-quality but more expensive interpolation schemes.

6 Conclusion
Moving volume KinectFusion frees the KinectFusion algorithm from one of the key con-
straints that made it unsuitable for use in mobile robotics and other free-roaming applica-
tions. By automatically translating and rotating the TSDF volume as needed we get both 6D
visual odometry and an always-available local spatial map of the environment. Some trade-
offs are involved: up to about 14ms latency can be introduced and our interpolation scheme
trades some quality for speed. The approach nevertheless seems feasible, with good results
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on benchmarks with ground truth and on novel locomotion sequences including a 25m hike
in the woods.
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