Moving Volume KinectFusion

Henry Roth
roth@ccs.neu.edu

Marsette Vona
http://ccis.neu.edu/research/gpc

College of Computer and Information Science
Northeastern University
Boston, MA

Newcombe and Izadi et al’s KinectFusion [5] is an impressive new al-
gorithm for real-time dense 3D mapping using the Kinect. It is geared
towards games and augmented reality, but could also be of great use for
robot perception. However, the algorithm is currently limited to a rela-
tively small volume fixed in the world at start up (typically a ~ 3m cube).
This limits applications for perception.

Here we report moving volume KinectFusion with additional algo-
rithms that allow the camera to roam freely. We are interested in percep-
tion in rough terrain, but the system would also be useful in other appli-
cations including free-roaming games and awareness aids for hazardous
environments or the visually impaired.

Our approach allows the algorithm to handle a volume that moves
arbitrarily on-line (Figure 1).

Figure 1: Remapping to hold the sensor pose fixed relative to the volume.
Raycast images before and after a remapping show a third step coming
into view as the volume moves forward. A reconstruction of the volume
and camera poses shows that the volume-to-volume transform is calcu-
lated to maintain the camera at the rear center of the volume.

We based our implementation on the open-source Kinfu code that
has recently been added to the Point Cloud Library (PCL) from Willow
Garage [6], and we have submitted our code for inclusion there as well.

With our algorithm in place, the “absolute” camera pose Cq, a 4 x 4
rigid transform expressing the current camera pose in the very first volume
frame, can be calculated at any time ¢ as

Cy =Py PG (1)

where C; is the current camera tracking transform from KinectFusion tak-
ing camera coordinate frame to its parent volume frame, each P, takes
volume frame i to volume frame i — 1, Py = I3x3, and vf(¢) is a bookkeep-
ing function that maps a depth image timestamp to the index of its parent
volume. (Volume frames are generally sparser than camera frames.)
Moving volume KinectFusion both tracks global camera motion (equa-

tion 1) and simultaneously builds a spatial map of the /ocal surroundings.
However, this is not a true SLAM algorithm as it does not explicitly close
large-scale loops and will inevitably incur drift over time. Rather, it can
be considered a 6D visual odometry approach in that the camera pose “Cj,
at any time b relative to an earlier time a is

2

Of course the significant additional benefit beyond visual odometry alone
is that a map of local environment surfaces is also always available.
After the Kinfu tracking phase gives the current local camera pose C;
we determine if a new volume frame is needed by calculating linear and
angular camera offsets /;, a, relative to a desired local camera pose C;.

R; ¢t _ . —
D:{Od ﬂ:cslc,, lg=tall, aq=rodrigues ' (Ry)|| (3)

“Cp=Cy ' Ptar1) -+ Pyt Co-

A new volume frame is triggered if /; > Imax Or @y > amax. We typically
use Imax = 0.3m, amax = 0.05rad, and

Wi /2
} C)

I%x% t;
o= | 2% L= /2
“ { 0 1}’ b [—I;m//lo

for volume W,,, H,,, D), meters, which is the default initial camera pose
for Kinfu. This keeps the camera centered just behind the volume (Fig-
ure 1, right; note that the origin of each volume frame is the upper left

corner of the volume with X right, § down, and Z pointing into the page).
Other strategies for determining C; may make sense—for example keep-
ing the camera centered in the volume, orienting the volume to task-
relevant directions—but are subject to the constraint that the camera must
see scene surfaces within the volume.

To introduce a new volume frame we remap the new volume from
the old. We maintain a swap buffer in GPU memory the same size as the
volume buffer for this; memory requirements for this large data structure
are thus doubled but still feasible on current GPUs. After the remap the
buffers are swapped and a new relative volume transform P, is set as

P =GCY (5)
where C;1 is the new camera transform. Conceptually G| = Cs, though
we allow an offset in some cases.

Remapping—sometimes called reslicing for the 3D case—has been
studied for medical images [3], but speed is often sacrificed for accuracy.
Efforts have been made to improve the speed [2], but generally reslicing
has not been done in real time. Here we require a fast parallel algorithm
which is tuned for common-case KinectFusion data.

Our approach is hybridized in two ways. First, if I; > Imax but ag <
amax We use a fast and exact memory shift algorithm, otherwise we use
a more traditional resampling based on trilinear interpolation. Second,
during resampling we take advantage of the fact that in the common case
much of the volume is either uninitialized or marked “empty”: we do
a nearest-neighbor lookup first, and only if that is within the truncation
band do we continue with a more expensive interpolation.

Using a novel battery-powered Kinect we collected 18 rocky terrain
datasets comprising an estimated 662m path length. (Though the Kinect
cannot cope with direct sunlight it does work outdoors on a reasonably
overcast day.) The richness of 3D depth features makes our approach
work well on rocky terrain—no camera tracking failures were incurred,
and reconstructed surfaces appear to be high quality (quantitative analysis
of the geometry is future work). We present performance and tracking
accuracy measurements for our algorithm on 6 datasets, comparing it with
the original Kinfu implementation and with ground truth and reference
results for RGB-D SLAM [1] where applicable.

While two other groups are also developing approaches to translate
the KinectFusion volume [4, 7], a key distinction of our method is the
ability to rotate the volume in addition to translation. Since the volume is
rectilinear this can be useful to control its orientation, e.g. to maximize
overlap of the camera frustum or to align the volume with task-relevant
directions, such as the average ground surface normal in locomotion.

[1] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard. Real-
time 3D visual SLAM with a hand-held RGB-D camera. In RGB-D
Workshop, European Robotics Forum, 2011.

[2] J. Fischer and A. del Rio. A fast method for applying rigid transfor-

mations to volume data. In WSCG, 2004.

[3] J. Hajnal, N. Saeed, E. Soar, A. Oatridge, I. Young, and G. Bydder.

A registration and interpolation procedure for subvoxel matching of

serially acquired MR images. Journal of Computer Assisted Tomog-

raphy, 19(2):289-296, 1995.

Francisco Heredia and Raphael Favier. Kinfu Large Scale in PCL.

http://www.pointclouds.org/blog/srcs, 2012.

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,

J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.

KinectFusion: real-time 3D reconstruction and interaction using a

moving depth camera. In UIST, pages 559-568, 2011.

R. Rusu and S. Cousins. 3D is here: Point cloud library (PCL). In

ICRA, 2011. (http://www.pointclouds.org).

T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and

J. Leonard. Kintinuous: Spatially extended KinectFusion. In RGB-D

Workshop at RSS, 2012.

(4]

(5]

(6]

(7]

