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Abstract

This report complements the BMVC paper Online Bayesian Nonpara-
metrics for Group Detection with additional information. In particular it
presents the method designed to perform online clustering of streaming
data with a Dirichlet Process Mixture Model. A sequential variational in-
ference framework for time evolving data is presented and used to perform
fast clustering with minimal memory requirements. The method has been
tested on synthetic data and the produced results show that the method
performs well while being extremely fast and memory efficient.

1 Introduction

Over the last decade, progressively more attention has been paid to the study of
data coming form high-throughput processes. In several domains, moreover, it
is important to process data streams in real-time in order to take decisions which
modify the execution of a performed task. Examples of very different applica-
tions range from real-time control of experiments in biology, to real-time video
analysis for monitoring and surveillance, to control of production processes, to
monitoring of sensor networks. Most of these applications are characterised by
the fact that the data streams of interest are extremely long and potentially
endless which means that on-line analysis methods are more suitable than those
based on batch elaboration in terms of both computational load and memory
requirements.
One important data analysis task which has been extended to work on dynamic
data is clustering. While the dynamics of the evolution of the data is very im-
portant in this task, in several situations modelling it explicitly a priori is either
too complex or impossible.
In this report we present a method to perform dynamic clustering of contem-
poraneous observations (data frames) coming from data streams evolving in
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parallel. The method performs clustering on-line and is based on sequential
variational inference for Dirichlet Process Mixture Models.
The report is organised as follows: at first past relevant works will be briefly
presented (Sec. 2), then the proposed method will be described (Sec. 3) and the
obtained results will be discussed (Sec. 4). Finally conclusions will be drawn
(Sec. 5).

2 Related Work

Clustering sequential data has been attracting attention in recent years and
various techniques have been proposed to deal with the problem. As pointed
out by several authors [12, 1], though, rather different approaches have been
followed.
A first distinction must be made on the object of the clustering itself. A first
class of methods [3] is aimed at clustering entire sequences. In this case the
single data points within the sequence are not of interest in themselves and
the whole set of points is considered as a single entity. The second class in-
cludes those methods for which the data points are the objects to be clustered.
This class, generally known as dynamic clustering methods, is by far the most
common and includes a series of different cases which differentiate themselves
along two main directions: the way points are considered and whether only the
past (on-line methods) or the entire sequence of observations (off-line methods)
is needed to perform clustering. The distinction between on-line and off-line
techniques is extremely important as it has a considerable impact on practical
applications. While off-line methods take advantage of the whole sequences to
find the best set of clustering configurations, on-line ones work on the basis of
past and current information only. While this latter modality is more challen-
ging and several complications arise, it is often the only applicable technique,
especially if the output of the clustering is to be used to take decisions affecting
the data-generating process itself (e.g. experiments or production processes to
name a few).
Beringer and Hüllermeier [4] proposed and on-line method based on an extension
of the K-means algorithm [9] to perform clustering of streaming data. Chakra-
barti et al. [6] proposed a more flexible framework where the cost function
minimised to define the clusters takes into account the smoothness in the evol-
ution of clustering configurations over time. Their framework can work on-line
and adapts easily to different types of clustering algorithms as shown in the
paper. The main disadvantage of the method is the need for a user defined cost
function which is often difficult to supply a priori. Both the mentioned methods
can work on-line, but pay in terms of sophistication and richness of the model.
Conversely, more statistically sophisticated off-line methods have been proposed.
Wang et al. [12] proposed the use of a Hidden semi-Markov Model to describe
the dynamic evolution of the mixture models defining the data clusters, while
Ahmed and Xing [1] presented the Temporal Dirichlet Process Mixture Model
which extends the standard Dirichlet Process Mixture Models in order to con-
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sider the evolution in time of the estimated components. While the model has
several interesting properties, being an off-line method its application is limited
to scenarios where entire data sequences are available at the time of analysis.
The method presented in this work tries to give a contribution in bridging the
highlighted gap, proposing an on-line method for dynamic clustering based on
sophisticated probabilistic models like Dirichlet Process Mixture Models.

3 Sequential Variational Inference Framework

Approaching clustering as an inference procedure on a graphical model describ-
ing the data-generating process offers different advantages linked to the nature
Bayesian inference. Among the different probabilistic models, Bayesian Non-
parametrics have several properties which suit the application well. In particu-
lar, Dirichlet Process Mixture Models (DPMM) [2] represent mixture distribu-
tions with an unbounded number of components where the complexity of the
model adapts to the observed data. This property is extremely important for
dynamic clustering, as the number of clusters is, in general, not known a priori
and can reasonably assumed to be changing over time. These models, in other
words, can naturally manage situations like split/merge of clusters1, creation of
new clusters or suppression of obsolete ones which are expected to be common
in dynamic evolution of data streams.
Despite their very appealing properties, Nonparametric Bayesian models are
characterised by computationally-intensive inference procedures often based on
Gibbs samplers. While Gibbs sampling can be an appropriate inference mech-
anism when execution time is not an issue, it is not applicable in situations
where computation must be minimal in order to perform fast inference. As
an alternative to Gibbs sampling variational inference can be used. Besides
reducing the amount of computation needed, variational inference has interest-
ing properties which make it more suitable than Markov Chain Monte Carlo
(MCMC) approaches for the problem at hand. The most important of these
properties is that variational inference maximises a lower bound to the true
underlying distribution and so, after each iteration, the obtained parameters
define a distribution which approximate the true one in a properly defined way.
In contrast, MCMC provide a valid approximation only after convergence which
generally takes many iterations and is anyway hard to assess.
This property of variational inference is particularly interesting when combined
with some specific properties of sequences of streaming data. One of the pecu-
liarities of data streams of practical interest is that their evolution is generally
quite smooth i.e. could be seen as being generated by stochastic processes
presenting some extent of (positive) autocorrelation. This translates in relat-
ively small difference between two consecutive observations. In such a setting,
it is reasonable to assume that, regardless the specific underlying process, what
happened in the past could be used as a prior belief for what is going to happen

1In the paper we will use the expressions of cluster and mixture component to indicate the
same concept, as already done by other authors [1].
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next.
This observation, along with the properties of variational inference, suggests
an efficient inference algorithm where, instead of iterating to convergence the
variational updating formulas for each data frame, inference is distributed over
time. In particular, one single iteration is performed for each update cycle and
the obtained posterior is used as the prior for the next frame.
In practice, each cluster is seen as a component of a mixture model in the space
where the observed points live. Variational Bayes is then used to update the
parameters of the component distribution, defining the posterior parameters
starting from the prior ones (posterior of the previous time step) and the cur-
rent observations.
Performing single-iteration updates allows to speed up inference considerably
with respect to MCMC-based methods which require to be run to convergence.
Moreover, taking advantage of sequential inference this way, the dynamics of the
clusters evolution is taken into account without explicitly modelling it. This is
an interesting property in those situations where modelling the dynamics a pri-
ori is too complex or impossible altogether.
It is well known that results of variational approximation may be affected by the
initialisation conditions as the Kullback-Leibler (KL) divergence can have local
minima. While such minima are generally avoided by running repeated experi-
ments with different initialisations, this process is time consuming and definitely
not suitable when results have to be produced in real time. Empirical evidence
gathered during experiments suggests that when running single update cycles
the problem of local minima is not as significant as when variational updates
are iterated to convergence. This is expected to happen because the dynamics
of the observed data make the initialisation conditions less important after an
initial transient. A formal analysis to thoroughly study this empirical observa-
tion will be subject of future work. While the presence of an initial transient
is unavoidable, it is common to have calibration transients in many methods
performing on-line analysis of time series data. Consequently this should not be
seen as a strong limitation, especially considering that the method is thought
to analyse long streams of data.

3.1 Mathematical Formulation

On the basis of the ideas introduced above, the problem of clustering a set of
contemporaneous observations (data frame) has been formalised as an inference
problem over a mixture model having infinitely many components. Each of the
Nt points Xn observed at time t is generated, by one of the infinitely many
components (k). It is important to underline that this approach deals naturally
with a number of points possibly varying from data frame to data frame. Each
component has its own parameters defining its distribution and has an associated
probability mass depending on the parameters of the Dirichlet Process prior
imposed on the components. For tractability, the Dirichlet Process prior [7] has
been implemented as a stick-breaking construction [11].
Under this model, clustering is performed on the basis of the probability each
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Figure 1: Graphical model representing the random variables and the hyper-
parameters at time t. Hyper-parameters are included in the plate since they are
not shared by the components. Refer to section 3.1 for details.

point has to belong to each component.
The graphical model associated to the described generative process is the one
shown in Figure 1 where, at time step t, we have Nt points and

Vk|γ1;k, γ2;k ∼ Beta (γ1;k, γ2;k) (1)

Zn|{v1, v2, . . .} ∼ Discrete (π (v)) (2)

Λk|Bk, ak ∼Wishart (Bk, ak) (3)

µk|mk, βk,Λk ∼ Gaussian
(
mk, (βkΛk)

−1
)

(4)

Xn|Zn ∼ Gaussian
(
µzn ,Λ

−1
zn

)
(5)

where Xn represents the nth data point, Zn is an assignment variable relating
each data point to the mixing components, Vk and the pair (µk,Λk) represent
the kth mixture component in the stick-breaking construction [11] with (µk,Λk)
representing the location of the component in the parameter space and Vk de-
fining the mixing proportions π(v). The resulting stick-breaking construction
G is

πk(v) = vk

k−1∏
j=1

(1− vj) (6)

G =

∞∑
k=1

πk(v) · δ(µk,Λk) (7)
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where δ(µk,Λk) represent a Dirac delta function in the location defined by (µk,Λk).
Please note that pedix t has been dropped to keep notation uncluttered and will
be introduced only when necessary.
It is important to underline that the proposed probabilistic formalisation em-
ploys conjugacy both on the observation side (the Gaussian-Wishart prior is
conjugate to the Gaussian observation model) and on the components side (the
Beta prior is conjugate to the Multinomial/Discrete distribution which defines
the probability of each component). This has been done in order to speed up
inference.

3.2 Variational Inference

Variational inference for Dirichlet Process Mixture Models has been originally
proposed by Blei and Jordan [5]. Their work, though, focused on static data
rather then on dynamic ones and variational updates were iterated to conver-
gence. Moreover, the proposed algorithm was meant to deal with components
having a fixed structure of the covariance matrix. In our work we overcame this
latter limitation using a Gaussian-Wishart model for the mixture components,
while single variational updates have been used to take advantage of the dy-
namics of the data, speeding up inference and incrementing the probability of
avoiding local minima.
As proposed by Blei and Jordan [5], mean field variational inference can be for-
mulated using a family of variational distributions over θ = {v, µ,Λ, z} based
on a truncated stick breaking construction with truncation level K

q (θ) =

K−1∏
k=1

qγk (vk)

K∏
k=1

qτk (µk,Λk)

N∏
n=1

qφn
(zn) (8)

The introduction of this truncation level, if done appropriately, causes minimal
approximation error while keeping the computation tractable [13]. In the for-
mula above, n indexes the data points, k indexes the mixture components, qγk ∼
Beta (γ1;k, γ2;k), qτk(µk,Λk) follows a Gaussian-Wishart model parametrised by

τk = {mk, βk,Bk, ak} such that qτk(µk,Λk) ∼ N
(
µk|mk, (βkΛk)

−1
)
W (Λk|Bk, ak)

and qφk
(zn) ∼ Discrete(φn). The product over the qγ·;k stops at component

K − 1 since the last component absorbs all the residual probability mass of the
stick-breaking construction and hence qγK (vK) = 1 [5].
Variational Bayes inference takes the form of an Expectation-Maximisation al-
gorithm and can be divided in an E-step and a M-step. The formulas of the
two steps have been derived from the ones proposed by Blei and Jordan [5] and
from those reported by Penny [10]. In the E-step the probability φkn of each of
the N points to belong to each of the K components is computed as:

φkn =
exp{Skn}∑K
j=1 exp{S

j
n}

(9)
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where

Skn = Eq[log(Vk)] +

k−1∑
i=1

Eq[log(1− Vk)] +
1

2
logΛ̃k+

− 1

2
(xn −mk)

′
Λ̄t (xn −mk)− d

2βk
(10)

with

Eq[log(Vk)] = Ψ(γ1;k)−Ψ(γ1;k + γ2;k) (11)

k−1∑
i=1

Eq[log(1− Vi)] = Ψ(γ2;k)−Ψ(γ1;k + γ2;k) (12)

logΛ̃k =

d∑
i=1

Ψ

(
ak + 1− i

2

)
+

− log |Bk|+ d · log (2) (13)

Λ̄k = akB
−1
k (14)

with d being the dimensionality of the space and Ψ(·) being the digamma func-
tion.
Once all φkn have been computed, the parameters of the distributions are up-
dated in the M-step. After defining the following variables

N̄k,t =

N∑
n=1

φk,tn (15)

µ̄k,t =
1

N̄k,t

N∑
n=1

φk,tn · xn,t (16)

Σ̄k,t =
1

N̄k,t

N∑
n=1

φk,tn (xn,t − µ̄k,t) (xn,t − µ̄k,t)′ (17)

the variational Bayes update formulas are used to update the parameters. The
computed parameters define the posterior distributions at time-step t and will be
used as prior for the following time-step from which the t+1 pedix is derived. In
particular, the parameters γ1;·,t+1 and γ2;·,t+1 of the Beta distribution defining
the sticks length and consequently the mixing proportions are updated as

γ1;k,t+1 = γ1;k,t + N̄k,t (18)

γ2;k,t+1 =

{
γ2;k,t +

∑K
j=k+1 N̄j,t if k < K

α if k = K
(19)

with α being the scaling constant of the Dirichlet Process prior at time-step
0 [5]. The parameters of the distribution of the mean of each component of the
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mixture are updated as

mk,t+1 =
N̄k,t · µ̄k,t + βk,t ·mk,t

N̄k,t + βk,t
(20)

βk,t+1 = N̄k,t + βk,t (21)

Finally the parameters of the distribution of the precision matrix of each com-
ponent are updated according to

ak,t+1 = N̄k,t + ak,t (22)

Bk,t+1 = N̄k,t · Σ̄k,t+

+
N̄k,t · βk,t (µ̄k,t −mk,t) (µ̄k,t −mk,t)

′

N̄k,t + βk,t
+

+Bk,t (23)

After the parameter initialisation, the variational E-M procedure can be applied
to the incoming data streams to perform inference over time.
After the conclusion of the M-step, the components which are not maximally
responsible for at least one point (i.e. components k̄ such that, @ point n such
that k̄ = arg max j φ

j
n) are considered unassigned and re-initialised to have mean

in areas of the space badly modelled by the current mixture. To conclude the
variational update, the components are sorted by decreasing number of assigned
points.

3.3 Properties of the Model

The probabilistic model proposed presents several desirable properties which
make it extremely well suited for online clustering of streaming data.
The first and most prominent property is that the model processes one single
data frame at each time-step and uses the observations, along with the prior
parameters, to derive the posterior mixture model. Integrating observations
over time through sequentially iterating this process, has two main advantages:
on the one hand it imposes a minimal computation burden, on the other hand it
has limited memory requirements which remain constant regardless the length of
the data stream. These two advantages make the proposed method well suited
for situations in which either speed is a major concern or long and potentially
endless data streams are to be processed.
Finally, given its algorithmic structure the inference process is highly parallel-
isable. This fact is particularly interesting considering that implementations
on GPUs could allow to perform real-time clustering of high-throughput data
streams.
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Figure 2: Real (grey) and estimated (colour) trajectories of the cluster means
in one specific run. Labels mark the position of the means at specific time
steps. Trajectories are nearly overlapping and differences are better appreciated
zooming on screen.

4 Experimental Results

The proposed clustering technique has been tested on a synthetic dataset to
assess the properties of the model and verify its ability to retrieve the real un-
derlying clusters.
In order to assess the ability of the proposed method to consistently identify

clusters evolving over time a synthetic dataset has been generated. The parallel
data streams have been simulated with a set of samples drawn from Gaussian
distributions evolving over time and the method was evaluated on the basis of
how well it could recover the underlying generating distributions.
A set of three 2D Gaussian distributions moving in space has been considered.
For each of them, the trajectory of the mean through space has been simulated
by generating a set of points from an ARMA(1,1) model (Autoregressive Mov-
ing Average model of order 1) [8] with high AR and MA coefficients (both set
to 0.95) and then performing a spline interpolation between them. This way
the generated trajectories were autocorrelated and smooth.
Cluster trajectories have been generated to simulate most of the challenges
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Figure 3: Error between estimated and real mean for each cluster (average over
50 experiments). The estimation error drops after an initial transient showing
that the method correctly infers the position of the clusters.

which characterise real situations. In particular, trajectories are very complex
and occasionally clusters have considerable overlap resembling a single distribu-
tion.
At each time-step t the algorithm was presented with a collection of data points
(data frame) sampled from the three Gaussians whose mean was the tth point
in the related trajectory. The covariance matrix was kept constant for easier
interpretation of the results, but everything extends to changing covariances
without any modification.
In order to obtain meaningful statistics 50 experiments have been run using
the same cluster trajectories but drawing each time different samples from the
Gaussian distributions. In all the experiments the truncation level of the stick-
breaking construction was fixed to 20.
Figure 2 shows the real and estimated trajectories of the means, while Figure 3
reports the error between the two. As previously mentioned, in the initial few
frames (roughly 100 in this case) the approximation is coarser. This is due to
the fact that the three generating components have not been correctly identified
because of the limited information cumulated during sequential inference and
for the effect of the initialisation of the parameters. Once enough evidence is
absorbed in the model parameters, the generating clusters are correctly outlined
and the error drops to low levels.
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Figure 4: Close up on a single trajectory showing real (blue) and estimated
trajectory (red). Real (light blue) and estimated (orange) covariances are shown
at three time steps (1, 350, 500) as indicated by the black labels.

The higher level of error for the components associated to the orange and red
trajectory is explained by a difficult situation deliberately induced to test the
strength of the method. When two components get very near and the generated
clusters have substantial overlap, it is difficult to decide how to assign the cluster
labels once the two trajectories get separated again. Over the 50 experiments,
occasional switches of labels have been observed in early time-steps between
clusters associated to orange and red trajectories which motivates the higher
level of error than that observed for the blue one.
The mentioned overlap between clusters is the source of error behind the peaks
observed after time-step 200 and around 400. When clusters overlap, in fact, the
assignment of points to mixture components is impossible without additional
information as many points could have been equally likely generated by either
mixture component. While there is no trivial solution to this problem, it is
important to notice that the proposed model is only marginally affected by this
challenging situation since only a small increase in the error is observed and
the components are kept separate and not fused into a single bigger cluster. A
notable exception is one of the observed trials when the cluster associated to the
red trajectory has been moved way off up to frame 200. Apart form this case,
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Table 1: Root Mean Square Error between real and estimated trajectories for
complete sequence (RMSE-2) and after the initial 100 frames (RMSE-1). Tracks
are identified by their colour in the graph. Reported data are averages over 50
experiments.

Blue Orange Red
RMSE-1 0.1969 0.1448 0.7388
RMSE-2 0.2585 0.3349 0.9592

which explains the high level of error for the red trajectory in the initial frames,
the proposed method is extremely effective in dealing with the complex task
faced. The result is even more interesting when considering that the method
processes single data frames and takes advantage of past data only through the
prior.
Figure 4, finally, reports a close-up on a single trajectory, showing how the
estimated covariance matrix evolves over time.
In order to evaluate quantitatively the obtained results, Table 1 reports the
Root Mean Square Error computed for the three trajectories. Both the values
ignoring the initial 100-frame transient (RMSE-1) and those for the complete
trajectories (RMSE-2) are satisfactorily low when compared to the variability
range of x and y coordinates (see Figure 2) and witness the ability of the method
to retrieve the original clusters.
From a more general point of view, it is important to underline that the method
was able to identify the correct number of clusters after the initial transient and
correctly prevented them to be merged in complex situations on the basis of the
past evidence summarised in the prior distribution.

5 Conclusions

An online method for dynamic clustering of data streams has been proposed.
The method builds on Dirichlet Process Mixture Models, exploiting their ability
to model mixture distributions having an unbounded number of clusters, and
on a sequential variational inference framework able to take advantage of the
dynamics of the clusters without explicitly modelling it.
The method has been tested on challenging data created for the purpose. The
proposed method performed well, showing its ability to infer the correct para-
meters of the evolving clusters in the synthetic dataset.
The results obtained in the experiments, the theoretical properties of the model
and the fact that inference is highly parallelisable, show that the method could
be promising for real-time clustering of high-throughput data streams.
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