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Abstract 

 

The aim of this work is to estimate dense displacement fields over long video shots. Put in 

sequence they are useful for representing point trajectories but also for propagating 

(pulling) information from a reference frame to the rest of the video. Highly elaborated 

optical flow estimation algorithms are at hand, and they were applied before for dense 

point tracking by simple accumulation, however with unavoidable position drift. On the 

other hand, direct long-term point matching is more robust to such deviations, but it is very 

sensitive to ambiguous correspondences. Why not combining the benefits of both 

approaches? Following this idea, we develop a multi-step flow fusion method that 

optimally generates dense long-term displacement fields by first merging several candidate 

estimated paths and then filtering the tracks in the spatio-temporal domain. Our approach 

permits to handle small and large displacements with improved accuracy and it is able to 

recover a trajectory after temporary occlusions. Especially useful for video editing 

applications, we attack the problem of graphic element insertion and video volume 

segmentation, together with a number of quantitative comparisons on ground-truth data 

with state-of-the-art approaches. 

1 Introduction 

Tracking image points associated with scene fragments in video sequences is an 

important problem in computer vision. It indeed serves as a fundamental brick for a 

number of more advanced tasks such as structure-from-motion and camera tracking (e.g., 

for mobile robotics, scene reconstruction or augmented reality), visual tracking of objects 

(e.g., for visual servoing, surveillance, annotation or editing) and, more recently, video 

indexing (e.g., for video copy detection or video synchronization), action description, 

detection and recognition, and dynamic scene analysis at large.  

In most cases, a sparse set of points, up to a few hundreds, is sufficient; these points are 

tracked independently based on their distinctive appearance. The standard tools for this 

type of point tracking are the KLT tracker [23] and its variants. There are cases though 

where dense sets of trajectories are better suited, if not mandatory. These include recent 

scene segmentation [4, 17] and analysis techniques [26] and a number of automatic and 

semi-automatic video editing tasks (e.g., graphic elements insertion [20] and 2D-to-3D 

video conversion [7]) in which spatial density and long-term temporal consistency are key.  
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For the purpose of tracking all points in a video, trackers of individual key points are not 

suited and resorting to a collective tracking is necessary. Considered over the shortest 

possible time interval in a given sequence, this problem basically amounts to estimating a 

dense displacement field, or optical flow field, between two consecutive video frames.  

Optical flow techniques [5, 12, 19, 24, 28] thus appear as the natural tool to build 

dense point trajectories. Numerically, this amounts to temporal integration, for which 

classic tools such as Euler’s and Runge-Kutta schemes are available. This is done for 

instance in [8, 17, 25]. Results are reported on fairly short sequences (reliable tracks last no 

more than about thirty frames). Unfortunately, no matter how good is the optical flow 

estimator, this leads to unavoidable error accumulation that results in a substantial drift 

over extended periods of time.  

Sand and Teller [22] introduced particle video, a sophisticated framework to compute 

variable-length point trajectories from successive optical flows. To this end, they proposed 

a full-fledged optimization framework, combining standard dense motion accumulation 

with sparse feature matching tools, for a limited set of “particles” maintained under 

tracking and automatically selected on the image grid. There is a careful reasoning on 

occlusion and trajectory termination, however no accounting for temporarily occluded 

particles. In contrast, we strive for accuracy without renouncing to full tracking density and 

maximum possible track life-span. This will be clear in our quantitative experiments. 

Garg et al. [11] recently proposed a method for computing optical flow between each 

of the images in a sequence and a reference frame adapted to non-rigid surfaces. They 

make use of the high correlation between 2D trajectories of different points and assume 

that the displacement of any point can be expressed compactly as a linear combination of a 

low-rank motion basis. This basis can be computed by applying Principal Component 

Analysis to a small subset of reliable point tracks. In contrast, our approach does not 

require prior feature tracking and strong a priori assumptions on scene contents. 

If we focus only on the problem of colour video signal representation/reconstruction 

from a reference image, impressive dedicated algorithms were proposed in the literature 

(e.g., SIFT-Flow [18], PatchMatch [2], Coherency Sensitive Hashing [14]), not based on 

optical flow but establishing dense patch/feature correspondences. With a different aim, 

the physical interpretation of such correspondences as motion vectors is generally not 

possible given that images can share content only partly and loosely, with dramatic 

viewpoint and appearance differences. If we are to design a fairly general key-frame-based 

video editing tool, these approaches are not well suited. 

With high quality editing of video shots of arbitrary duration in mind, we focus on the 

following problem: how to construct dense fields of correspondences over extended time 

periods using series of elementary optical flows. Toward this goal, the concept of multi-

step flow was recently introduced in [9] to estimate, with high accuracy, dense 

displacement fields from any frame in a video to a common reference one, using sequences 

of optical flows. The idea is to rely on a set of displacement fields between arbitrarily 

distant frames. We develop significant improvements to this first approach based on three 

main extensions: 1) we extend the construction of candidate displacement fields by 

combination of bidirectional (forward and backward) elementary optical flows, 2) we 

formulate a sounder criterion for fusing flow field candidates, and 3) we develop a novel 

spatio-temporal filtering method exploiting trajectory-based features for refinement of 

long-term correspondence fields. The proposed multi-step fusion flow estimation technique 

performs well both for point-wise tracking and for “pulling” dense information from a 

reference frame, as demonstrated through a number of experiments on ground-truth data 

and through visual assessment.  
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2 Multi-step flow fusion 

Consider a sequence of RGB images  𝐼𝑛  𝑛 :0...𝑁 . Let 𝒅𝑛 ,𝑚 :Ω → ℝ2 be a displacement 

field defined on the continuous rectangular domain Ω , such that for every 𝒙 ∈ Ω  it 

corresponds a displacement vector 𝒅𝑛 ,𝑚 (𝒙) ∈ ℝ2 for the ordered pair of images {𝐼𝑛 , 𝐼𝑚 }. 

Given a reference image, say 𝐼0 ,  dense point tracking is compactly represented by 

𝒅0,𝑚  ∀𝑚: 1…𝑁 (from-the-reference correspondences), i.e., the set of displacement fields 

from 𝐼0 to the subsequent frames 𝐼𝑚 . Instead, for propagating (pulling) information present 

at a key reference frame to the rest of the sequence it is often more natural to deal with 

𝒅𝑛 ,0 ∀𝑛: 1…𝑁 (to-the-reference correspondences). This is illustrated in Fig. 1. 

We address the problem of estimating from-the-reference as well as to-the-reference 

long-term displacement fields from elementary optical flow fields. Temporal integration of 

successive optical flow fields is possible but flow estimation errors are inevitably 

accumulated through this process. A solution would be to estimate the direct displacements 

between the reference frame and the other frames. However the longer the distance in time 

between two frames, the more ambiguous the matching process. So-called large 

displacement dense matching algorithms deal either with fast motion between consecutive 

frames [5] (but are not at all oriented to finding point correspondences along hundreds of 

frames) or assume parametric models [27] also constrained to limited frame distances. 

However, matching non-consecutive (time distant) frames can still be very useful as its 

accuracy much depends on inter-frame motion range: indeed one observes that for 

short/mid-term dense point matching, some regions of the image are better matched by 

concatenating consecutive motion vectors, while for others a direct matching is preferred 

(e.g., if displacement between consecutive frames is small). Then, the idea is to consider 

multiple displacement fields with various inter-frame distances in order to have the best 

vectors available among all the candidates. The process is carried out in three phases: first, 

elementary optical flow fields with various inter-frame distances (called steps) are 

estimated between arbitrary frames  𝐼𝑖 , 𝐼𝑗  𝑖 ,𝑗 :0...𝑁
. Then, considering a pair {𝐼𝑛 , 𝐼𝑚 }, various 

candidate displacement fields 𝒅𝑛 ,𝑚  are computed by concatenating different elementary 

fields. Finally the optimal displacement field 𝒅𝑛 ,𝑚
∗  is obtained by merging these candidate 

fields. This is called Multi-Step Fusion (MSF).  

Figure 1. Point 

correspondence schemes. 

Top: From-the-reference 

scheme corresponds to the 

problem of determining the 

trajectory of each initial 

grid point in the reference 

frame along the sequence. 

Bottom: To-the-reference 

scheme corresponds to 

determining the position in 

the reference image of each 

grid point of each image of 

the sequence. 

 

To-the-reference 

From-the-reference 
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Figure 2. Multi-step point correspondence. The displacement from frame 𝐼𝑛  to frame 𝐼0 

can be generated following different “paths” according to the available elementary motion 

fields (solid lines) and the previously estimated long-term displacements (dashed lines). 

 

Define an initial set of possible step values 𝑆 = {𝑠1 ,… , 𝑠𝑄}  with 𝑠𝑘 ∈  −𝑁,−1 ∪
 1,𝑁 . Now, considering the pair {𝐼𝑛 , 𝐼0}, (respectively, the current and reference frames), 

let 𝑆𝑛 ⊂ 𝑆 be the plausible subset of steps 𝑆𝑛 = {𝑠𝑘 ∈ 𝑆 −𝑛 ≤ 𝑠𝑘 ≤ 𝑁 − 𝑛} with  𝑆𝑛  =
𝑄𝑛 . For the given 𝑛 we consequently consider an input set 𝑴𝑛of 𝑄𝑛  elementary optical 

flow fields 𝒗𝑛 ,𝑡   (between frames 𝑛 and 𝑡): 𝑴𝑛 =  𝒗𝑛 ,𝑛+𝑠𝑘
 
𝑠𝑘∈𝑆𝑛

. For each input optical 

flow within this set, one can compute a displacement field between 𝐼𝑛  and 𝐼0  resulting 

from the combination of the elementary field 𝒗𝑛 ,𝑛+𝑠𝑘  
 and the displacement 𝒅𝑛+𝑠𝑘 ,0  

available between 𝐼𝑛+𝑠𝑘
 and 𝐼0. For each 𝒙 we thus write: 

 

 𝒅𝑛 ,0
𝑘  𝒙 = 𝒗𝑛 ,𝑛+𝑠𝑘

 𝒙 + 𝒅𝑛+𝑠𝑘 ,0  𝒙 + 𝒗𝑛 ,𝑛+𝑠𝑘
 𝒙  . (1)  

In this manner we generate different candidate displacements or paths (Fig. 2) among 

which we aim at deciding the optimal for each pixel 𝒙. The process runs a first pass 

sequentially from frames 𝐼1  to 𝐼𝑁  relying on displacement fields estimated at previous 

frames. In this case, considered step values are negative (as 𝑠1 , 𝑠2  and 𝑠3 in Fig. 2). We 

propose to extend the set of available steps proposed in [9] to positive steps (e.g., 𝑠4 > 0 in 

Fig. 2), by considering a second pass from frames 𝐼𝑁−1 to 𝐼1that takes into account new 

candidates corresponding to frames m (m>n in our example) whose displacement field 

𝒅𝑚 ,0 was not yet available during the first pass. The novelty is that a correspondence can 

be built by combining both forward and backward intermediate displacements. Not just a 

matter of adding more candidates, the ability of moving back and forth permits to handle 

more appropriately temporary occlusions and motion discontinuities. The selection of the 

optimal path for all the points of the grid for a pair {𝐼𝑛 , 𝐼0}  is achieved via a global 

optimization stage that fuses all the candidate fields into a single optimal displacement 

field 𝒅𝑛 ,0
∗ . While a purely discrete model, such as a Potts-like energy on the path labels, 

may seem suitable as proposed in [9, 27] such a label-based regularization does not 

necessarily translate in spatial smoothness of motion. Instead, we propose to minimize: 

w.r.t. 𝑲 =  𝑘𝒙 , a complete labeling of the image grid, where each label indicates one of 

the candidate paths; 𝐶𝑛 ,0 𝒙,𝒅  is a matching cost between location 𝒙  in image 𝐼𝑛  and 

location 𝒙 + 𝒅  in 𝐼0 . Meanwhile, regularization is enforced between the displacement 

vector values rather than the label values: < 𝒙,𝒚 >  is a pair of neighbouring image 

 𝐸𝑛 ,0 𝑲 =  𝐶𝑛 ,0  𝒙,𝒅𝑛 ,0 
𝑘𝒙  𝒙  𝒙 +  𝛼𝒙,𝒚 ∙  𝒅𝑛 ,0 

𝑘𝒙  𝒙 − 𝒅𝑛 ,0 

𝑘𝒚  𝒚  
1

<𝒙,𝒚> , (2) 

𝒗𝑛 ,𝑛+𝑠1   

𝒗𝑛 ,𝑛+𝑠3   

𝒗𝑛 ,𝑛+𝑠2   

𝒅𝑛+𝑠1 ,0  

𝒗𝑛 ,𝑛+𝑠4
 

𝒅𝑛+𝑠3 ,0  

𝐼0 𝐼𝑁  
𝒅𝑛+𝑠2 ,0  

𝒅𝑛+𝑠4 ,0  

𝐼𝑛  
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locations according to 8-point connectivity. 𝛼𝒙,𝒚  accounts for colour and elementary 

motion (step 1) spatial similarities (see section 4 for more details). Standard graph-cut 

optimization techniques cannot be applied since the resulting energy does not meet certain 

necessary conditions [13]. We then apply the method recently presented in [15, 16] in the 

context of instantaneous optical flow estimation by flow fusion. It results that for each 

point we obtain the best path label 𝑘𝒙 , and this in turn gives the optimal long-term 

correspondence vector 𝒅𝑛 ,0 
∗  𝒙 = 𝒅𝑛 ,0 

𝑘𝒙  𝒙 . Of course, this can be generalized to any 

reference frame, and the application to the from-the-reference displacement fields is 

straightforward. 

3 Multilateral spatio-temporal filtering 

Once forward and backward displacement/trajectory fields exit the multi-step fusion 

stage, they can be advantageously combined in a mutual refinement step. Actually, forward 

and backward fields 𝒅0,𝑛  and 𝒅𝑛 ,0  that have been estimated independently carry 

complementary, or sometimes contradictory, information. In addition, the trajectory 

features provided by the forward fields are also taken into account: the set of forward 

vectors 𝒅0,𝑛 𝒙  describes the trajectory of point 𝒙 in frame 𝐼0  along the sequence. The 

iterative filtering described below is preceded by occlusion detection (adapted from the 

occlusion constraint (OCC) method described in [10]) and inconsistency evaluation 

(left/right disparity checking in [10], here applied to forward/backward motion fields). 

For all pairs {𝐼0 , 𝐼𝑛 } , forward displacement fields 𝒅0,𝑛   are first spatio-temporally 

filtered considering the trajectories of spatial neighbouring pixels in the reference frame 𝐼0. 

This step increases the consistency in terms of trajectory behaviour for neighbouring 

pixels. Then, forward and backward displacement fields 𝒅0,𝑛   and 𝒅𝑛 ,0  are jointly 

processed via multilateral filtering which propagates iteratively the refinement from the 

forward (respectively backward) direction to the backward (respectively forward) 

direction. 

The “trajectory” aspect of the forward fields is considered in two ways. First, a 

trajectory similarity weight between neighbouring pixels in 𝐼0  is introduced. Second, 

displacement fields in neighbouring frames are taken into account in the filtering process. 

Forward displacement fields 𝒅0,𝑛  (𝒙) are iteratively filtered considering the neighbouring 

forward vectors  𝒅0,𝑚   𝒚  𝑚 :𝑛−∆…𝑛+∆
 where  defines a temporal window. This first step is 

defined as follows: 

 𝒅 0,𝑛
𝑭𝑾 𝒙 =

  𝑤𝑡𝑟𝑎𝑗
𝒙𝒚

∙𝑤0,𝑚
𝒙𝒚

∙(𝑛 𝑚 )𝒚∈ℱ 𝒙 
∙𝒅0,𝑚  𝒚 

𝑚=𝑛+∆
𝑚=𝑛−∆

  𝑤
𝑡𝑟𝑎𝑗
𝒙𝒚

∙𝑤0,𝑚
𝒙𝒚

𝒚∈ℱ 𝒙 
𝑚=𝑛+∆
𝑚=𝑛−∆

, (3) 

where ℱ{𝒙}  defines a spatial neighbourhood of 𝒙 . Each vector in neighbouring frames 

(𝑚 ≠ 𝑛) is weighted by a scaling factor 𝑛/𝑚 in order to make the input motion fields 
 𝒅0,𝑚   𝒚  𝑚 :𝑛−∆…𝑛+∆

, that correspond to different temporal distances, comparable. 𝑤𝑠,𝑡
𝒙𝒚

 is a 

weight that links points 𝒙,𝒚 at frame 𝐼𝑠  based on their motion to frame 𝐼𝑡 : 

𝑤𝑠,𝑡
𝒙𝒚

= 𝜌𝑠,𝑡 ∙ 𝑒
− 

 𝒙−𝒚 2
2

𝛾
 + 

  𝐼𝑠
𝑐 𝒙 −𝐼𝑠

𝑐 𝒚  𝑐∈{𝑟 ,𝑔 ,𝑏}

𝜑
 + 

  𝐼𝑠
𝑐 𝒚 −𝐼𝑡

𝑐 𝒚+𝒅𝑠,𝑡  𝒚   𝑐∈{𝑟 ,𝑔 ,𝑏}

θ
  

. 
(4) 
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This weight combines spatial distance, colour similarity and matching cost. It involves 

𝐼𝑠
𝑐 𝒙  which corresponds to a RGB component at location 𝒙 in image 𝐼𝑠 . 𝜌𝑠,𝑡  is a binary 

value that is 1 only if the point was not detected as occluded. 𝛾, 𝜑 and θ are positive 

constants used to adjust the weight components. For uniform areas we set 𝛾 → ∞ and 𝜑 is 

increased to limit the effect of pixels with a different colour value. Pixels in 𝐼𝑠  that belong 

to uniform areas are those for which: 

 exp  −
   𝐼𝑠

𝑐 𝒙 −𝐼𝑠
𝑐 𝒚  𝑐∈{𝑟 ,𝑔 ,𝑏}  

2

ξ
 𝒚∈ℱ 𝒙 

>  0.5       (ξ > 0). (5) 

The weight 𝑤𝑡𝑟𝑎𝑗
𝒙𝒚

 derives from the similarity of the trajectories that support the 

two currently compared forward vectors. It is defined as: 

𝑤𝑡𝑟𝑎𝑗
𝒙𝒚

= exp  −
  𝒅0,𝑚  𝒙 −𝒅0,𝑚  𝒚  2

2𝑚=𝑁
𝑚=1

𝜓
        (𝜓 > 0). (6) 

Once forward displacement fields have been spatio-temporally filtered, joint 

multilateral filtering (both forward/backward and backward/forward) is performed. Noting 

𝒛 = 𝒙 + 𝒅0,𝑛  (𝒙), the updated forward displacement field is: 

𝒅 0,𝑛 𝒙 =
 𝑤0,𝑛

𝒙𝒚
∙𝒅 0,𝑛
𝑭𝑾 𝒚 𝒚∈ℱ 𝒙 

− 𝑤𝑛 ,0
𝒛𝒚

∙𝒅𝑛 ,0 𝒚 𝒚∈ℱ 𝒛 

 𝑤0,𝑛
𝒙𝒚

𝒚∈ℱ 𝒙 
+ 𝑤𝑛 ,0

𝒛𝒚
𝒚∈ℱ 𝒛 

. (7) 

The weights are defined as in (4) except that a motion vector similarity term replaces 

the trajectory similarity (not available for the backward direction). The backward vector is 

filtered analogously with 𝒛 = 𝒙 + 𝒅𝑛 ,0 (𝒙). 

The three steps of the whole spatio-temporal filtering method (spatio-temporal filtering 

and forward/backward and backward/forward joint multilateral filtering) are iterated a 

given number of times. Every 3 iterations, the whole process is applied to the totality of the 

vectors while, for the other iterations, it is limited to those for which the inconsistency 

value is above a threshold. In this way, we give more confidence to consistent values in a 

soft manner.  

An a posteriori choice between unfiltered and filtered vectors is performed with respect 

to the matching cost while encouraging filtering to some extent. We apply the global 

optimization proposed in (2) in order to fuse unfiltered and filtered vectors.  

4 Experiments  

We propose different types of experiments to assess the performance of our method 

along with comparisons with state-of-the-art approaches. We focus on two video 

sequences that combine a rich set of interesting characteristics (Fig. 3): AmeliaRetro 

(courtesy of Dolby®) (1920 × 1080 × 100 frames featuring zooming, occlusions, spatial 

lighting variation); and Newspaper ( 1024 × 768 × 100  frames featuring temporary 

occlusions, fixed background, appearing background object, shadows, low colour contrast 

between different motion regions). 

Parameter specification. We define 𝐶𝑛 ,0 𝒙,𝒅  in (2) as the mean absolute difference 

(MAD) of pixel colour values between image windows of size 5 × 5. For 8-bit colour 

components, the value of MAD is then truncated to a maximum of 128 in order to  
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Figure 3. Video sequences used in the experiments. Top: frames 0,25,75,100  of 

AmeliaRetro, Bottom: frames 0,25,50,75,100 of Newspaper (cropped). 

 

robustify the measurement. Moreover, the effect of illumination variations and shadows is 

attenuated by normalizing each colour pixel of the input images by a local mean intensity. 

Meanwhile, the parameter 𝛼𝒙,𝒚 in (2) is defined as 𝛼𝒙,𝒚 ≡ 𝛼𝒙𝒚
𝑛 = 20  ∙ 𝛼𝒙𝒚

𝑛  
𝑐𝑜𝑙𝑜𝑟

∙  𝛼𝒙𝒚
𝑛  

𝑚𝑜𝑡𝑖𝑜𝑛
. 

First,  𝛼𝒙𝒚
𝑛  

𝑐𝑜𝑙𝑜𝑟
=  e−∥𝒄𝒙

𝑛−𝒄𝒚
𝑛 ∥1 𝜎  with 𝒄𝒙

𝑛 , 𝒄𝒚
𝑛  the 3-channel colour vectors at locations 𝒙 and 

𝒚, for image 𝑛, respectively, and 𝜎 = 300. This enforces smoothness of the motion vectors 

assigned to nearby pixels with similar colour. Second,  𝛼𝑥𝑦
𝑛  

𝑚𝑜𝑡𝑖𝑜𝑛
= 

e−∥𝒗𝑛 ,𝑛±1 𝒙 −𝒗𝑛 ,𝑛±1(𝒚)∥1 10  with 𝒗𝑛 ,𝑛±1(𝒙)  the motion vector from the (forward or 

backward) input optical flow between consecutive images (with step 1). Instantaneous 

optical flow is a reliable measure that gives useful information about motion 

discontinuities. Though it is true that long-term displacements are also valuable (and 

complementary), we cannot rely on them at this early stage. 

Regarding multilateral filtering, the spatial and temporal windows are respectively of 

size 7×7 and 3 . The number of iterations has been empirically set to 19. Moreover, 

𝛾 = 200, 𝜑 = 600 (1000 if the corresponding pixel belongs to a uniform area), θ = 600, 

ξ = 200, 𝜓 = 5 × 𝑁 . The threshold for the inconsistency evaluation equals to 1 pixel. 

Finally, the global optimization described in (2) is applied to fuse unfiltered and filtered 

vectors with 𝛼𝒙,𝒚 ≡ 20  ∙ 𝛼𝒙𝒚
𝑛  

𝑐𝑜𝑙𝑜𝑟
. 

Input optical flows. The set of input elementary optical flow fields is manually selected as 

to handle a rich variety of situations within each video sequence. Though it may depend on 

the video content, a basic set of candidate steps is 

𝑆 = {±1, ±2, ±5, ±10, ±20, ±30, ±40, ±50, ±100} . However adaptation of this set to 

each shot might be useful. In our experiments, these motion fields are estimated by means 

of an adapted 2D version of the 1D disparity estimator described in [21], but any estimator 

should do. For AmeliaRetro, due to the predominance of camera motion, we have also 

complemented the set of non-parametric optical flow fields with additional affine motion 

fields for steps {±10, ±20, ±30, ±50, ±80}. The algorithm is indeed clearly able to handle 

several candidates for a same given step, possibly estimated with different methods or 

parameters. 

Computation Time. In order to assess the computation time of the process chain we have 

conducted an experiment given an input sequence with 100 frames of 400 × 400 pixels. 

On average, it takes ∼ 2  seconds per frame and per candidate path to perform the 

construction of the energy and the global optimization. That is, with 𝑐 candidate paths, the 
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fusion process takes ∼ 2𝑐  seconds. Regarding multilateral filtering applied with the 

parameters described above, around 90 seconds per frame are required. 

Comparisons. We compare our multi-step fusion method w.r.t. other state-of-the-art 

approaches: the TV-L1 optical flow method [28], Large Displacement Optical Flow 

(LDOF) [5, 25], basic Multi-Step via Graph-cuts (MS-GC) [9] and ParticleVideo (PV) 

[22]. The first two provide dense point tracks by motion integration; MS-GC is our 

baseline method for the multi-step approach; PV estimates a sparse set of tracks. We also 

test different versions of our approach: single step (step = 1) optical flow estimation from 

[21] (STEP1), multi-step fusion without filtering (MSF) and multi-step fusion with spatio-

temporal filtering (MSF+STF). 

Trajectory evaluation. We have picked 8 points in 𝐼0 of AmeliaRetro, carefully selected 

as to account for textured and non-textured areas. We manually generated the ground truth 

trajectories along the 100 frames. We then measured the frame-by-frame position error for 

several methods as depicted in Fig. 4 (top). For each method, we plot the median error 

among the 8 points at each instant. We draw the following remarks from the plot: a) the 

three methods based on optical-flow integration (TV-L1, LDOF, STEP1) are the worst 

performing, supporting our claim that high precision in instantaneous motion estimation 

does not guarantee long-term tracking accuracy; b) Multi-step methods start to perform 

better after ~30 frames, duration that is coherent with the maximum track length used in 

[4, 17, 25, 29] c) the most accurate method is MSF+STF, specially noting how the position 

error at frame 63 is as small as in frame 7. The optimal combination of short and long term 

matching did its job reducing the drift. 

For Newspaper, we analyze the complex situation of a temporary occlusion, as 

observed in Fig. 4 (bottom), where the arm and the cup occlude the chest. A total of 19 

points were manually tracked, equally spaced by 10 pixels on a vertical line that passes 

through the chest and the hand. While for single step methods it is impossible to estimate 

the trajectories of the occluded pixels after the occlusion (finally attaching all the tracks to 

the motion of the hand, which obliges to stop the trajectory), the multi-step fusion 

algorithm is able to circumvent the problem thanks to the long-step input displacement 

fields. Moreover, track segments before and after the occlusion are naturally linked 

together as each position refers to the same reference point. The filtering step improves the 

temporal consistency of trajectories. 

An ingenious way of quantitatively assessing the quality of the estimated trajectories is 

by mirroring a sequence in time, i.e., constructing  𝐼𝑛  𝑛 :0...𝑁….0 and checking the symmetry 

of the track [22]. For a given point, the departing location is known to be identical to the 

arriving position. We go further by testing the same condition for all the pairs of mirrored 

instants. The AmeliaRetro sequence was cropped to a meaningful area of 768 × 675 pixels 

and mirrored taking the first 50  frames to generate a new 100  frame video: 

AmeliaRetroMirror. Our method is tested on this sequence and compared to PV and MS-

GC. In Fig. 5, we observe the improvement obtained in terms of precision. Moreover, 

multi-step methods obtain the full-length tracks for 100% (518400) of the image points 

in 𝐼0 while PV is only able to estimate 0.2% full-length tracks, and initially selects only 

0.5% (2610) points in the first image. Higher accuracy together with full density clearly 

shows the benefits of our approach. 

Long-term image warping. The second experiment consists in reconstructing the 

reference image 𝐼0  from each image  𝐼𝑛  of a video sequence exploiting point 

correspondences. This is a very challenging task which permits to obtain a global measure  
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Figure 4. Top. Median position error for the 8 

ground-truth trajectories for AmeliaRetro. 

Bottom. Vertical component of the 10 

estimated tracks (see text) for Newspaper with 

different methods. The points were selected 

equally spaced on a vertical line that passes 

through the chest and the arm. 

 

  

 
Motion integration (TV-L1) [28] 

 

 

 
MSF 

 

 
MSF+STF 

 

Figure 5. Position error for AmeliaRetroMirror. 

Each data point corresponds to the pair of time 

instants [{49,51}; {48,52};… ; {0,100}] . Our 

method shows a better accuracy tracking 100% 

of the points compared to Particle Video [22], 

which is only able to completely track 0.2% of 

the points. 

 

 
 

 

 

 
 

 

 
 

Figure 6. Image warping error and occlusion handling using forward correspondences. 

Left: quality of reconstruction of the reference image 𝐼0 from each subsequent frame 𝐼𝑛>0 

for AmeliaRetro. Right: percentage of visible points detected by each method for 

Newspaper. 

of the performance of an algorithm. Indeed, large colour differences clearly show defective 

correspondences. This is achieved for AmeliaRetro by copying the colour values from  𝐼𝑛  

according to the displacement field 𝒅0,𝑛   𝒙 . Note that this corresponds to a from-the-

reference strategy. Then we compute the colour PSNR in a block within the dress of the 

lady of each reconstructed reference image w.r.t. the original reference image 𝐼0. In Fig. 6 

(left) we observe that multi-step approaches are clearly better for reconstruction than 

standard optical flow integration. And among them, the improvement of MSF methods is 

significant especially w.r.t. the baseline multi-step MS-GC method. The PSNR assessment 

for the to-the-reference strategy (reconstruction of 𝐼𝑛  from 𝐼0) gives also good results. The 

same experiment was conducted for the sequence Newspaper. However given that the 

colour of moving regions is basically the same (blue) the curves were not meaningful for 

assessing the accuracy of the correspondence estimation. On the other hand, it is  
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Figure 7. Video editing examples. For AmeliaRetro (top) the reconstruction of the texture 

is improved with our method. For Newspaper (bottom) we highlight the consistency of the 

insertion before and after the occlusion only for MSF+STF. 

 

interesting to show the behaviour of each method in front of the temporary occlusions 

caused by the arm and cup. We thus plot in Fig. 6 (right) the percentage of visible points 

detected by each method along the sequence. This illustrates the fact that our method is 

able to recover reappearing points while for single step methods, the number of visible 

points decreases monotonically. 

 

5 Applications 

Video editing. Once we have a set of dense long-term correspondences that link every 

point of the sequence to the reference frame, the applications in the context of video 

editing are unlimited. A typical problem is the insertion of external graphical elements on 

real surfaces within the video. With this regard, we present two results for AmeliaRetro 

and Newspaper (Fig. 7). The first consists in changing the colour of a part of the dress of 

the lady at frame 100  and then propagating this change by using the to-the-reference 

(forward in this case) fields to the remaining 100 frames. We compare the methods STEP1 

(which was the best result among single step methods), MS-GC, MSF+STF, and, as well, 

Coherency Sensitive Hashing [14] using their estimated patch correspondences. Secondly, 

we have inserted a logo at frame 𝐼0 of Newspaper, which is then automatically inserted in 

the other frames. Note how the large occlusion by the arm can be overcome only by multi-

step methods. However the accuracy of MSF+STF is clearly better than MS-GC. Note the 

consistency before and after the occlusion. Moreover, we have taken advantage of the 

reliable point correspondences in order to compute a brightness gain for each point 

between the reference and each frame. This permits to insert the element more realistically 

over a shadowed area.  

 

Key-frame based video segmentation. Let’s assume that the user provides a dense 

segmentation map for a given reference frame. For each grid location 𝒙 of each non-

reference frame of the sequence, and if it is not detected as occluded, we determine its 

corresponding position in the reference frame. If this position is within the image 

boundaries, the label of the nearest pixel is given to 𝒙. At this stage, occluded pixels 

remain unlabelled. Note that this label propagation process can be easily adapted to use 

more than one single reference segmentation map. If a conflict appears between the labels 

propagated at the same pixel 𝒙 from different reference frames, we simply solve it by  

    

    
STEP1 CSH [14] MS-GC [9] MSF+STF 

n=34 

n=46 
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Figure 8. From label 

propagation to dense 

segmentation. 

Frames 0, 25, 50, 75 

and 100 are shown. 

The user provided 

reference 

segmentation maps 

for frames 0 and 100.  

 

assigning 𝒙  to the label corresponding to the lowest colour matching cost. Dense 

segmentation (Fig. 8) may then be obtained using standard segmentation tools. Precisely, 

to refine the maps obtained by label propagation and to assign a label at the occluded 

pixels, we perform a graph-cut minimization of a cost function which is the sum of two 

standard terms. The first term is a colour data penalty term of assigning label 𝑙 at pixel 𝒙. It 

is set as the negative log-likelihood of colour distribution of the video region  𝑙. This 

distribution consists of the Gaussian mixture model in the RGB space computed on the 

regions 𝑙 in the reference segmentation maps. The second term is the standard contrast 

sensitive regularization term defined in [3]. Note the slight rotation of the girl that results 

in self-occlusions w.r.t. both key-frames. Temporal consistency of the segmentation could 

be reinforced by adding an explicit constraint based on available motion fields estimated 

between consecutive frames. 

 

6 Conclusion 

We presented a new algorithm for estimating dense correspondence fields between 

arbitrary distant frames in long video shots. It is based on the combination, then optimal 

merge, of several intermediate candidate displacement fields, including forward, as well as 

backward, elementary optical flows. The notion of trajectory is then explicitly taken into 

account in a novel spatio-temporal filtering step. Compared to state-of-the art approaches, 

the fields resulting from our approach present an improved accuracy, particularly for large 

motions and in presence of temporary occlusions. 

A point that would deserve further investigation is the automatic selection of both the 

reference frames and the input set of candidate steps depending on the considered shot. 

They have indeed to be set properly as each shot contains its own motion peculiarity. For 

reference frames, the aim would be for instance to automatically identify the smallest set of 

frames that contain alone all the regions visible along the shot. 
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