
Fast and Robust Surface Normal Integration by a Discrete Eikonal Equation

Silvano Galliani
galliani@mia.uni-saarland.de

Mathematical Image Analysis Group
Saarland University, Germany

Michael Breuß
breuss@tu-cottbus.de

Institute for Applied Mathematics and Scientific Computing
BTU Cottbus, Germany

Yong Chul Ju
y.ju@mmci.uni-saarland.de

Vision and Image Processing Group
Saarland University, Germany

Since the integration of normal vectors plays an important role for recon-
structing a surface, over decades it has been one of the most fundamen-
tal problems in computer vision and thereby extensively investigated by
many researchers [6]. While many schemes have been proposed, there
is, however, still a need for methods that combine accuracy, robustness
and high efficiency. In view of efficiency, the fast marching (FM) [1, 3]
method appears to be a natural candidate for an algorithmic approach,
because the method gives us a complexity of O(N logN), where N is the
number of pixels of the computational domain, for the problems described
by a static eikonal-type equation. In the work of Ho et al. [2] this strat-
egy has been adopted, which is based on an analytic formulation of the
integration task in terms of an eikonal equation. Whereas in [2] some
promising results are presented, the authors also report significant prob-
lems with the robustness and accuracy of the scheme.

In this paper, we improve the scheme of Ho et al. [2] by proposing a
complete discrete formulation (DEFM) in terms of a proper approxima-
tion of the underlying partial differential equation (PDE). Furthermore,
by relying on pre-computed geodesic distance as a metric on the compu-
tational domain we extend our method in such a way that the DEFM can
handle topologically more challenging domains, e.g. domains with holes.

From the fundamental theorem of calculus an antiderivative v in 1D
is given by

∫
v′(x1)dx1 = v(x1)+ c with a constant c. In 2D, this can be

extended as
w(x1,x2) := v(x1,x2)+λ f (x1,x2) , (1)

where λ > 0 is a constant parameter and f denotes a function. Since a
function f in (1) should not change the important structure of w, specially
critical points, in [2] as such a function

fHo := x2
1 + x2

2 (2)

is chosen which admits only one minimum at origin. For the deployment
of FM, the expression in (1) is turned into an eikonal-type expression

|∇w|= |∇v+λ∇ fHo|=
√

(vx1 +λ 2x1)2 +(vx2 +λ 2x2)2 (3)

with vx1 := ∂v
∂x1

and vx2 := ∂v
∂x2

. Since all elements on the right hand side of
(3) are known, the FM method allows to compute w from the PDE |∇w|=
|∇v+λ∇ fHo|. In the method of Ho et al. [2], the analytic formulation of
∇ fHo in (2) is employed. However, since the analytic formulation has the
same effect as the central difference method, the result by this method
suffers from severe instability for solving (3) by the FM, see Figure 1(a).

In view of the properties from the underlying eikonal-type PDE and
FM method, our main advancement stems from the deployment of a proper
discretisation for (3) – upwind scheme [5]. In 1D, this upwind discretisa-
tion reads as

f̂x := max
(
D− f ,−D+ f ,0

)
(4)

with

D− f =
fi− fi−1

∆x
> 0 and D+ f =

fi+1− fi
∆x

< 0 (5)

where ∆x is the mesh width and f j denotes a function value at a grid
point j ∈Z. Each inequality in (5) holds for consistency since the upwind
scheme chooses only one direction for the propagation of the information.

Our scheme analysis based on [4] shows that the proposed method is
monotone and thereby stable if

λ ≥ ε > 0 , (6)

where ε is a very small pre-defined constant. This suggests that the pro-
posed method gives us no restrictions for the choice of the parameter λ in
(3) in contrast to the case of Ho et al.

(a) Optimal result by the scheme of Ho et al. (b) Generic result by our method.

Figure 1: Reconstruction results by each method.

As shown in Figure 1 and Table 1, numerical experiments confirm
our analysis in that even with very large λ values the present result out-
performs in all error measures.

Table 1: Error measurements for Lena experiment shown in Figure 1.

Mean Median Standard deviation

Ho et al. (λ = 0.2) 0.3060 0.2079 0.3604
Our method (λ = 1000000) 0.0785 0.0364 0.1325

Moreover, in order to deal with topologically more challenging com-
putational domains we employ the more general geodesic distance for the
function f in (1) instead of L2 metric given in (2). Our numerical experi-
ment again verifies that the geodesic measurements can handle non-trivial
integrations domains accordingly as shown in Figure 2.

(a) Reconstruction without a mask. (b) Reconstruction with a mask.

Figure 2: Renderings of the Buddha face.
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