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Abstract

Accurate camera synchronisation is indispensable for many video processing tasks,
such as surveillance and 3D modelling. Video-based synchronisation facilitates the de-
sign and setup of networks with moving cameras or devices without an external synchro-
nisation capability, such as low-cost web cameras, or Kinects. In this paper, we present
an algorithm which can work with such heterogeneous networks. The algorithm first
finds the corresponding frame indices between each camera pair, by the help of image
feature correspondences and epipolar geometry. Then, for each pair, a relative frame
rate and offset are computed by fitting a 2D line to the index correspondences. These
pairwise relations define a graph, in which each spanning cycle comprises an absolute
synchronisation hypothesis. The optimal solution is found by an exhaustive search over
the spanning cycles. The algorithm is experimentally demonstrated to yield highly accu-
rate estimates in a number of scenarios involving static and moving cameras, and Kinect.

1 Introduction
Camera synchronisation involves the temporal alignment of a set of video sequences, in-
dependently acquired by two or more cameras. Accurate synchronisation is crucial for a
wide variety of applications requiring multi-camera setups, ranging from 3D modelling of
dynamic scenes (e.g., featuring a performance, or a sports event) [11] [13] to video surveil-
lance [1] [7] and super-resolution [24]. A camera network can be synchronised via hardware
(e.g., a synchronisation signal), or audio signals [13] [6]. However, the feasibility of hard-
ware synchronisation is limited by the size and the spread of the network: in an outdoor
scenario such as [18], which involves 16 cameras spread over an area roughly the size of a
football pitch, cabling is a tedious and time-consuming job. Moreover, hardware connection
may be impractical for a free-moving camera, or the device in question may not even have
an external synchronisation capability- as is the case for the ubiquitous mobile devices, and
the increasingly popular Kinect. The alternative, audio synchronisation, also suffers from a
number of practical difficulties, such as background noise and relatively slow propagation of
sound in air, precluding subframe-level precision [13].

In the case of overlapping fields-of-view, an event observed from multiple viewpoints can
provide a very strong synchronisation cue. Such an event can be generated, for example, by
discharging a flash. However, through-the-lens synchronisation research of the past decade
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yielded techniques that can work with generic dynamic content. These techniques can be
broadly classified as direct (dense) and feature-based (sparse) approaches [3].

Dense approaches attempt to utilise all available intensity information. Some interesting
examples include [6], where 3D phase correlation is employed to estimate a constant index
shift between two sequences; and [9] and [7], where the corresponding frames are identified
via an image similarity metric. Despite their reported success, these methods are susceptible
to appearance or scale changes [3], limiting their application to narrow-baseline scenarios.
Moreover, designed for moving camera platforms, [9] and [7] are likely to have difficulties
when the temporal intensity variation is confined to a small portion of the scene, drowning
the signal in the background noise [7]. Another dense method described in [22] overcomes
the baseline limitation by measuring the total intensity variation on a set of corresponding
epipolar lines over time, if both a fundamental matrix and a background plate are available.

In contrast to their dense counterparts, sparse approaches employ a small set of distinc-
tive features. They usually need to establish feature correspondences between the sequences.
However, there is a considerable variation as to what makes a feature. At one end of the spec-
trum, space-time interest points [29] [5] localise an event both on the spatial and the temporal
axis, but they are reported to be unsatisfactory in the presence of wide-baseline conditions
and cluttered background [20]. The entire trajectory of a dynamic (i.e., moving) point can
be considered as the other extreme, as a spatial interest point smeared across the temporal
axis. [16] and [3] propose techniques to characterise and match point trajectories. Alterna-
tively, the trajectories can be stacked into a matrix, whose rank is bounded by the rigidity of
the scene [28] [26]. Another method, presented in [27], estimates the shift between the se-
quences by aligning the 3D planes spanned by the backprojection rays of a point observed in
two sequences. Trajectory-based methods are effective, but their applicability is limited by
the availability of long and accurate trajectories across the sequence [27] [16] [26]. This is a
non-trivial requirement, especially for scenes involving deformable objects such as humans,
or rigid objects with significant appearance variation.

Between these two extremes lies methods that rely on tracklets, or even, point corre-
spondences. [23] assesses the fitness of a frame pair candidate by evaluating the rigidity of
9 point correspondences, with at least one dynamic point, and then employs dynamic time
warping to find the best index correspondence set. [26] generalises this to homography and
affine models. [20] and [14] assume that an estimate of the projective calibration is available
(or can be computed from the static background), and utilise the epipolar constraint and the
tri-focal transfer error, respectively, to estimate the synchronisation parameters. [25], on the
other hand, can work with fully dynamic scenes, such as a blue screen scenario, and given an
accurate foreground segmentation, computes a joint calibration and an index shift estimate.

[26], [20], [14] and [25] are unique in the sense that they discuss scenarios with more
than 2 cameras. However, [25] and [14] assume a constant frame rate, and estimate only the
temporal offset. [20] returns a frame rate and an offset for each camera in the network, but
only if there are points visible in all frames, an assumption which imposes restrictions on the
content and the camera placement. Moreover, the performance degrades as the number of
available features increases beyond a certain level, as the timeline reconstruction algorithm
cannot cope with the increasing complexity of the solution space and the outlier ratio [20].
[26] mentions an extension to more than 2 cameras, however, does not present any results.

In this paper, we propose a synchronisation algorithm to estimate a frame rate and an
offset for each member of a network composed of 2 or more cameras. The design is guided
by the following considerations:
• Heterogeneity: The algorithm should be able to handle cameras with different frame
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rates, resolutions, and motion characteristics. Sample networks include Kinect and HD
cameras, multiple Kinects, mobile devices, and hybrid static-moving camera setups for
movie production.
• Modularity: The 2-camera synchronisation problem requires only pairwise overlap-

ping fields-of-view. Moreover, there is a wealth of literature to draw upon. Therefore,
the algorithm should decompose the original problem into pairwise synchronisation
tasks, and fuse the resulting relative synchronisation estimates for pairs into a consis-
tent and accurate absolute synchronisation for the entire set.
• Spatial locality: In order to achieve robust wide-baseline performance, the algorithm

should follow the feature-based paradigm, preferably with affine-invariant features,
such as [17].
• Temporal locality: Long and accurate tracks on deformable objects are difficult to

establish. Therefore, the algorithm should rely on short tracklets or points.
• Frugality: In order to be able to cope with self-occlusions, lack of texture, and view-

point variation, the algorithm should need as few features as possible, and should not
assume the existence of points visible in more than 2 cameras.

The algorithm treats the set of pairwise synchronisation estimates as a graph with po-
tentially missing links, where each vertex represents a camera, and each edge, the relative
synchronisation between the cameras it connects. An absolute synchronisation hypothesis
can be computed from any cycle that spans the entire vertex set (Figure 3). The fusion step
seeks such a cycle which minimises a consistency measure over the index correspondences.
The pairwise synchronisation step assesses the similarity of each frame pair in the sequences
by the agreement of the feature correspondences with the available geometric constraints
(e.g., epipolar constraint), and then estimates the subframe index shift which maximises this
score. A Viterbi scheme establishes the index correspondences while imposing the ordering
constraint. The frame rate and the offset are computed by robustly fitting a 2D line to the
index correspondence set. The novel contributions are:
• A bottom-up absolute synchronisation framework. We propose a new, graph-based

synchronisation fusion framework, which seeks an absolute synchronisation that ex-
plains the observed index correspondences. Unlike the sequential method presented
in [14], a graph is not order dependent, and can represent the relationships between
non-neighbouring pairs. Our approach is superior to the graph-based method of [25],
as it can incorporate more constraints, in the form observed index correspondences.
Also, unlike [14] and [25], it does not assume a known frame rate, and unlike [20],
existence of points visible in all cameras.
• A new pairwise synchronisation algorithm: We propose a novel 2-camera synchro-

nisation algorithm, which fits a 2D line to the observed subframe index correspon-
dences. Similar to [7], the algorithm can exploit the ordering constraint (i.e., mono-
tonicity of the index pairs) via dynamic programming, but it also benefits from a linear
prior to reject the outlier correspondences. [26] employs 2D line-fitting, but lacks a
mechanism as powerful as the ordering constraint to eliminate the outliers. Subframe
refinement over a trajectory is proposed in [3], but unlike our algorithm, can only oper-
ate over one direction. The combination of these techniques leads to a robust algorithm
which is unique in its ability to work with minimal amount of image information: the
minimal requirement is two (possibly independent) point correspondences observed at
different time instants.

The rest of the paper is organised as follows: The 2-camera synchronisation and the
fusion algorithms are discussed in the next section. The performance of the algorithm is
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Figure 1: Overview of the algorithm, with one moving and 3 static cameras. Ri j blocks
compute the relative synchronisation between the ith and the jth cameras. Ai is the absolute
synchronisation for the ith camera.

experimentally demonstrated in Section 3, on a variety of networks involving static and
moving HD cameras and a Kinect. Section 4 presents the conclusions.

2 Synchronisation Framework

2.1 Problem Definition
Assuming no frame-drops, the relation between the indices of an image sequence, t, and the
reference timeline, tr, is captured by the line [20]

t = αtr + τ, (1)

where α is the frame rate of the camera, and τ is the offset between the first frame of the
sequence and the origin of the timeline. Given an ensemble of N cameras, the network
synchronisation problem involves the estimation of the sets {αi}N−1

i=0 and {τi}N−1
i=0 , a frame

rate and an offset for each camera in the network. The absolute synchronisation for the ith
camera, Ai is defined as the pair {αi;τi}.

Through Equation 1, the relative synchronisation of the jth camera with respect to the
ith defines the line linking the associated index sets, t j and ti as

t j = αi jti + τi j. (2)

Ri j denotes the corresponding relative synchronisation estimate, the pair {αi j;τi j}.
The absolute synchronisation algorithm (Section 2.3) obtains {Ai} from {Ri j} (Figure 1).

In order to compute Ri j, two inputs are necessary: The geometric relationship between the
images, imposed by the scene and the imaging geometry, e.g., a fundamental matrix (Fij), or
a homography (Hij); and a set of feature tracks on the dynamic scene elements.

In the synchronisation literature, Fij and Hij are often estimated from the static back-
ground [20] [14] [26], by various methods described in [12]. In our experiments, we cali-
brated the static cameras by [19], and the moving cameras by [8].

As for the tracks, since the algorithm does not rely on long trajectories, simple trackers
such as KLT [2] are sufficient. In our implementation, we track the Hessian-affine fea-
tures [17] described by SIFT [15], as affine-invariance is necessary for wide-baseline match-
ing across the members of the network. In order to weed out the static trajectories, which do
not carry any useful information for synchronisation, we estimate the homographies relating
the successive frames in a sequence, and retain the features that do not conform to the model.
Such features are either on dynamic trajectories, or genuine outliers. However, if foreground
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Figure 2: Trellis diagram for two sequences, with 3 and 4 images, respectively. An admissi-
ble path is marked by red, for the correspondence set { f 0

1 ; f 0
2 }, { f 1

1 ; f 0
2 }, { f 2

1 ; f 0
2 }, { f 3

1 ; f 1
2 }

masks are available, they can be used to identify and remove the static features.

2.2 Relative Synchronisation

The relative synchronisation block estimates R = {α;τ} for a camera pair, by fitting a line
to the indices of the matching frame pairs. The frame matching process is constrained by the
ordering rule, which states that, if the pth frame in the first sequence ( f p

1 ) corresponds to the
qth frame in the second ( f q

2 ), f q+1
2 cannot be matched to a frame preceding f p

1 . This is anal-
ogous to the stereo-matching problem, which can be solved via dynamic programming [4].
On the trellis in Figure 2, each axis represents a sequence, and each node, a correspondence
hypothesis. A node Nq

p holds a value measuring the strength of the hypothesised match
{ f p

1 ; f q
2 }. The transition probability indicates whether { f p′

2 ; f q+1
2 } is a valid match with re-

spect to the ordering constraint, given { f p
1 ; f q

2 }. Each column of the trellis is augmented by
a node Nq

/0 , indicating a no-correspondence event. The no-correspondence nodes are exempt
from the ordering constraint.

The transition probability from Nq
p to Nq+1

p′ is defined as

T (Nq
p,N

q+1
p′ ) =

 1 p≤ p′

1 p∨ p′ = /0
0 otherwise

. (3)

This formulation allows one-to-many matches, so that the algorithm can handle the cases
where α 6= 1. The admissible transitions can be further constrained through an initial esti-
mate of the synchronisation parameters, if available.

Mq
p, the match strength for { f p

1 ; f q
2 } is computed by first establishing the feature cor-

respondences between the two images, guided by the available geometric constraint [12],
e.g., F or H. Then, the distance of each correspondence to the constraint is calculated. Mq

p
is a function of the median value of the distances for the entire correspondence set. More
concretely, if the geometric constraint is F and the constraint violations are measured by the
Sampson error [12], the value the node Nq

p holds is

Mq
p =


W ( median
{xp;xq}∈K

S(xp,xq,F)) |K|> νK

ε q = /0
0 otherwise

, (4)

where xp is a homogeneous point coordinate in f p
1 , xq is the corresponding coordinate in

f q
2 , and {xp;xq} is a member of the set of correspondences, K. νK is a threshold over

the cardinality of K. S denotes the Sampson error function, and W , a truncated Gaussian
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Figure 3: Synchronisation graph for 4 cameras. The red line traces a spanning cycle.
nonlinearity that converts the constraint error to a fitness score in [0,1]. ε is a positive scalar
that indicates the minimum admissible match score. Although image feature matching is a
computationally demanding process, the use of guided matching on relatively small sets of
features helps to mitigate the cost.

Subframe resolution is achieved by minimising a shift parameter, β , over the point tra-
jectory. Given a point xq ∈ f q

2 , the preceding point xq−1, and the succeeding point xq+1, β is
the solution to the minimisation problem

β = argmin
β ′∈[−1,1]

∑
{xp,xq}∈K

S(xp,xq(β
′),F)

where xq(β
′) =

{
(1−β ′)xq +β ′xq+1 β ′ > 0
(1+β ′)xq−β ′xq−1 β ′ ≤ 0

(5)

The minimisation is performed over K via Powell’s dog leg algorithm [21] , and β is ini-
tialised as 0. Unlike [3], the minimisation can be performed over crooked paths. If xq is a
terminal point, depending on whether it is the first or the last, xq−1 or xq+1 is set to xq.

The first step, frame matching, processes the frame pairs independently, hence, does not
need any tracks, or a fixed F. In order to use the subframe refinement with varying F, xq−1
and xq+1 should be registered to the same frame as xq. However, since the camera motion in
successive frames satisfies the narrow-baseline conditions, the mapping can be approximated
as a homography, and computed from Fq−1,Fq and Fq+1.

The subframe refinement step is not symmetrical: fixing xq and moving xp on its trajec-
tory is likely to yield a different β . Therefore, the matching algorithm is repeated twice, by
swapping the roles of the sequences. Then a RANSAC-based [10] robust line fitting algo-
rithm is applied to the index correspondences. As per Equation 2, the resulting line defines
the relative synchronisation between the cameras. If α is known, this step is reduced to a
1-dimensional offset estimation problem.

The algorithm is presented for a fundamental matrix, however, an equivalent derivation
for a homography is straightforward. In this case, the Sampson error should be replaced by
the transfer error.

It should be noted that this method, like any other method relying on epipolar geom-
etry [23] [26] [20], is not applicable when the motion is purely along the epipolar line.
However, this is an issue only with specific combinations of camera setups and scenes, and
seldom a problem with general networks, and generic video content.

2.3 Absolute Synchronisation

The relative synchronisation algorithm of Section 2.2 is applied to all camera pairs, to obtain
the set {Ri j}. Upon removing the members with too few index correspondences, the remain-
ing {αi j;τi j} pairs can be represented as a graph (Figure 3), where each vertex is a camera,
and each link is a relative synchronisation. The relation between Ri j and the corresponding
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Algorithm 1 Evaluation of an Absolute Synchronisation Hypothesis
Input: {Ai}, and I, the index correspondences for all relative synchronisations in the cycle
Output: A scalar indicating the fitness of {Ai}

1. For each Ri j in the cycle, compute a R̂i j from the corresponding Ai and A j (Equation 6).
2. For each R̂i j, compute the Euclidean distance of the index correspondences between

the ith and the jth camera (Ii j) to the line defined by {αi j;τi j}. The evaluation metric
for a pair is the sum of all Euclidean distances over Ii j.

3. The evaluation metric for a cycle is the sum of all metrics over the {i; j} pairs in the
cycle.

absolute synchronisations, Ai and A j is

αi j =
α j

αi
⇒ αi jαi−α j = 0

τi j = τ j−
α j

αi
τi

(6)

For an L−camera set, a spanning cycle provides L constraints, which can be stacked into
the linear equation systems of the following form:

A[α0 . . .αL−1]
T = 0 (7)

B[τ0 . . .τL−1]
T = b (8)

Both systems can be solved via standard linear algebra techniques. We first solve Equa-
tion 7, and use the result in Equation 8. Alternatively, the systems can be solved jointly, but
the potentially large scale difference between {αi} and {τi} is likely to cause problems.

Equation 7 can be solved only up to an unknown scale. We fix the scale by setting
α0 = 1. Also, since the origin is arbitrary, we set τ0 = 0. Therefore, the first camera provides
the reference timeline tr in Equation 1.

Since not all Ri j are equally accurate, the quality of the final {Ai} depends on the exact
cycle, i.e., the exact set of relative synchronisation estimates, selected to solve Equations 7
and 8. Consistency of a cycle, i.e., whether the composition of all transformations along
the cycle is identity, can be used as a measure of quality. However, our experiments indi-
cated that two poor relative synchronisation estimates can cancel each other out, yielding a
consistent cycle, but an incorrect {Ai}. Instead, we do the evaluation directly on the index
correspondences by using Algorithm 1.

The absolute synchronisation is performed via Algorithm 2, which exhaustively evalu-
ates all spanning cycles in the graph through Algorithm 1. Any promising cycles are further
refined by minimisation over the set of consistent relative synchronisations (steps 2-4). The
computational load due to the exhaustive search is negligible, as often the graph is not fully
connected, and any unpromising hypotheses can be culled early on.

3 Experimental Results
The performance of the algorithm is evaluated on 3 scenarios, Acrobatics, Stretch and Pos-
sessed (Figures 4, 5 and 6). Acrobatics involves a static network of 8 HD cameras and a
Kinect viewing an actor doing somersaults and handstands for 23 seconds. Stretch and Pos-
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Algorithm 2 Computation of an Absolute Synchronisation Hypothesis
Input: {Ri j} and {Ii j}
Output: {Ai}
For each spanning cycle in the graph

1. Evaluate the cycle via Algorithm 1.
2. If it is better than the current best, compute R̂i j for each element of {Ri j} (i.e., not just

the ones in the cycle) via Equation 6. Any Ri j that satisfies the conditions |αi j− α̂i j|<
νal pha and |τi j− τ̂i j|< νtau is an inlier synchronisation. Else, next cycle.

3. Re-estimate {Ai} over all inliers, via Equation 7 and 8.
4. Refine {Ai} by minimising the total Euclidean distance computed over the index cor-

respondences of all inlier synchronisations.

Figure 4: Acrobatics. Top: Cameras 0-6. Bottom: Camera 7, and the Kinect.

Figure 5: Stretch. Top: Cameras 0-6. Bottom: The nodal camera.

Figure 6: Possessed. Top: Cameras 0-6. Bottom: The free-moving camera.

sessed feature 1 moving (nodal, and free-moving, respectively) and 7 static HD cameras,
viewing an actor rocking and stretching for 15 seconds. The Kinect captures images at a
resolution of 640x480 pixels, at a frame rate of 30 fps, whereas for the HD cameras, the
resolution is 1920x1080 and the frame rate is 25 fps. The ground-truth values for τ in Table1
is obtained by first hardware-synchronising the HD cameras, and then introducing a known
shift. τ for the Kinect is manually determined from the images. The details of the calibration
and tracking are discussed in Section 2.1. Table 1 shows the results.

Acrobatics is a good example of the challenges posed by a heterogeneous camera net-
work: The Kinect has a lower resolution and slower shutter speed, causing blur. Moreover,
the white balance exhibits a significant variation across the set, and the Kinect images suffer
from saturated patches. The content involves fast motion and rapid deformation of texture-
less elements. This proves to be a double-edged sword: It provides a strong synchronisation
cue, but also leads to motion blur, and difficulties in feature tracking and matching. However,
Table 1a indicates that the algorithm achieves a very high accuracy, both in α and τ . These



IMRE, HILTON: THROUGH-THE-LENS SYNCHRONISATION 9

(a) Acrobatics

0 1 2 3 4 5 6 7 Kinect
α 1 1 1 1 1 1 1 1 1.2
τ 0 -11 -15 -31 -9 -27 -26 -32 ≈ 26.8

∆α 0 5.8×10−7 1.1×10−6 7.6×10−7 1.1×10−6 1.2×10−6 7.1×10−7 1.7×10−6 5.9×10−4

∆τ 0 5.8×10−4 1.3×10−4 3.7×10−4 6.8×10−5 2.7×10−4 1.9×10−5 7.6×10−4 6.2×10−2

(b) Stretch

0 1 2 3 4 5 6 Nodal
α 1 1 1 1 1 1 1 1
τ 0 -30 -1 -5 -17 -13 -10 0

∆α 0 9.7×10−6 1.9×10−6 5.2×10−6 2.6×10−6 2.4×10−6 3.4×10−7 7.0×10−7

∆τ 0 3.5×10−3 4.7×10−4 8.6×10−5 1.8×10−4 1.2×10−3 3.0×10−4 3.6×10−4

(c) Possessed

0 1 2 3 4 5 6 Free
α 1 1 1 1 1 1 1 1
τ 0 -4 -24 -16 -9 -38 -5 0

∆α 0 3.5×10−5 3.2×10−5 3.5×10−5 3.4×10−5 3.6×10−5 3.0×10−5 2.6×10−5

∆τ 0 2.0×10−4 5.0×10−4 7.0×10−4 3.5×10−4 1.4×10−3 2.0×10−3 4.7×10−3

Table 1: Absolute synchronisation estimates, with Camera 0 as the reference. α and τ are
the ground-truth values of the synchronisation parameters, whereas ∆α and ∆τ indicate the
absolute value of the estimation error. The ground-truth offset for the Kinect is not known,
but manually determined from the sequence.

figures should be contrasted with those reported by two recent methods [26] and [20] on their
own datasets: best α and τ errors are 0.0041 and 1.4 for [26], and 0.0027 and 0.34 for [20],
respectively; i.e., several orders of magnitude higher from those presented in Table 1.

Stretch and Possessed demonstrate the performance of the algorithm when the network
has dynamic elements. The slow and repetitive rocking motion, repetitive texture, and po-
tential calibration errors all introduce an ambiguity to the frame matching process, and cause
mismatches. However, as shown in Tables 1b and 1c, the algorithm effectively copes with
these issues. Although the absence of subframe shifts probably improves the performance,
Table 1a clearly shows that the algorithm can work under subframe shifts (introduced by the
frame rate difference, as well as the lack of hardware synchronisation).

The algorithm owes its robustness and accuracy to the following:

• Dynamic programming is an effective method to resolve the ambiguities in the match-
ing process, as it enforces a higher-level consistency constraint. It is also very robust to
large shifts, which only changes the location of the node corresponding to the correct
match in the trellis, without significantly altering its match fitness score.

• The use of tracklets and affine-invariant features mitigates the difficulties posed by fast
motion, deformable objects and viewpoint change.

• Fitting a line to estimate the relative synchronisation gives the algorithm the ability to
cope with index correspondence sets with a very large number of outliers and few true
matches: In 600 frames, we regularly observe that less than 3% inliers are sufficient
for a satisfactory estimate.

• The decomposition of the global synchronisation problem into a set of pairwise syn-
chronisation problems allows effective exploitation of the high-quality estimates ob-
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tained from neighbouring camera pairs.
• The absolute synchronisation stage eliminates the erroneous pairwise relations, and

effectively pools the information extracted from the entire data to improve the accuracy
of the results.

4 Conclusion
This paper presents an algorithm for the synchronisation a network of 2 or more cameras.
The algorithm employs a pairwise synchronisation block, which, through the use of guided
feature matching and dynamic programming, first finds a set of index correspondences, and
then computes the optimal subframe shifts. The pairwise relations are fused into an absolute
synchronisation estimate, by finding the best spanning cycle over a graph of relative syn-
chronisations, and then further refined by imposing all available pairwise synchronisation
and index correspondence constraints. Our contributions include a new 2-camera synchroni-
sation algorithm, and a novel framework for fusing the relative synchronisation estimates.

The algorithm follows a bottom-up approach, leveraging both the robustness and frugal-
ity of the 2-camera solver, and the precision offered by multiple constraints. It is shown to
perform very well on a number of scenarios involving a Kinect and moving cameras.

Acknowledgements: This work is supported by the TSB project “SYMMM: Synchro-
nising Multimodal Movie Metadata”.
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