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Abstract

Recent coding-based image classification systems generally adopt a key step of s-
patial pooling operation, which characterizes the statistics of patch-level local feature
codes over the regions of interest (ROI), to form the image-level representation for clas-
sification. In this paper, we present a hierarchical ROI dictionary for spatial pooling, to
beyond the widely used spatial pyramid in image classification literature. By utilizing
the compositionality among ROIs, it captures rich spatial statistical information via an
efficient pooling algorithm in deep hierarchy. On this basis, we further employ partial
least squares analysis to learn a more compact and discriminative image representation.
The experimental results demonstrate superiority of the proposed hierarchical pooling
method relative to spatial pyramid, on three benchmark datasets for image classification.

1 Introduction

In recent image classification systems, spatial pooling is a key step to form the image-level
representation from the patch-level local features. It captures meaningful statistical infor-
mation of local feature codes over different ROIs, and achieves certain spatial invariance
property for facilitating classification. On the spatial representation model, which defines
the dictionary of ROIs in spatial pooling, the spatial pyramid is predominately used in im-
age classification literature [2, 3, 12, 13, 20, 22]. As shown in Fig. 2(a), it partitions the
image lattice into regular cells with increasing granularity (e.g., 1 X 1 +2 X2 +4 x4 grids),
to characterize spatial statistics over various scales and locations. In spite of the success
of spatial pyramid in practical applications, its rigid structure may limit the resultant image
representation from exploring richer spatial statistical information further.

© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.  http://dx.doi.org/10.5244/C.26.102


Citation
Citation
{Boureau, Bach, LeCun, and Ponce} 2010

Citation
Citation
{Boureau, Roux, Bach, Ponce, and LeCun} 2011

Citation
Citation
{Lazebnik, Schmid, and Ponce} 2006

Citation
Citation
{Liu, Wang, and Liu} 2011

Citation
Citation
{Wang, Yang, Yu, Lv, Huang, and Gong} 2010

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

http://dx.doi.org/10.5244/C.26.102

2 ZHU, et al.: HIERARCHICAL SPATIAL POOLING

Based on the tangram model [23], which learns flexible and adaptive configurations for
scene representation, we construct a hierarchical ROI dictionary (called by HRD in this pa-
per for short) for spatial pooling. Compared to rigid spatial pyramid model, it assembles
the ROIs with more shape types, locations and scales, and is capable of retaining richer spa-
tial statistical information. Besides, by taking advantage of mutual compositionality among
ROIs, HRD can be inherently organized into a directed acyclic graph, and this derives an
efficient hierarchical algorithm to facilitate spatial pooling.

Although the pooled features can be directly used for classification, it has two drawback-
s: (1) Caused from the over-completeness and compositionality of ROIs in HRD, it tends to
be highly correlated and redundant between the variables of pooled features; (2) For a HRD
with large number of ROIs, it produces a huge number of variables in this raw feature rep-
resentation and may obstruct large-scale image classification. Motivated by the success of
partial least squares (PLS) in computer vision literature [17, 18], we further employ the PLS
analysis for dimensionality reduction on the pooled features. It can capture the statistical
relationship between pooled features and class labels for different visual words, and learn a
more compact and discriminative feature representation for classification.

The contributions of this paper are summarized as follows:

e Based on the tangram model [23], an over-complete HRD is constructed for spatial
pooling, to supply richer spatial statistics than the spatial pyramid.

e An efficient algorithm is proposed for spatial pooling in deep hierarchy, by utilizing
the compositionality among the ROIs in HRD.

e By employing the PLS analysis, we can learn a compact and discriminative image-
level representation for classification.

The remainder of this paper is organized as follows: Sec. 2 outlines the coding-based
image classification framework adopted in this paper, with discussion on related works. In
Sec. 3, we elaborate the method of constructing HRD as well as the algorithm for hierarchical
spatial pooling. Then, Sec. 4 introduces the PLS analysis to learn final image representation
for classification. In Sec. 5, we demonstrate experimental results of the proposed method on
three benchmark datasets for image classification, and conclude this paper in Sec. 6.

2 The Coding-based Image Classification Framework

In this paper, we adopt the coding-based image classification framework. As illustrated in
Fig. 1, it mainly involves the following three steps: feature extraction, coding and pooling.

(a) Feature Extraction: For an image I, we first collect P local image patches through
densely sampling in a regular grid or using an interest point detector. After that, each patch
is represented by a low-level feature descriptor a € R” (e.g., SIFT [14]), and a set of local
features A = [a;,ay,- - ,ap] € RP*P is extracted from L

(b) Coding: Given a codebook (denoted by B = [by,b,,---,bx] € RP*K) with K visual
words, each local feature a; is encoded into a code vector ¢; = [c(lt),c(zt), e ,c%)]T, through
solving a generalized least squares problem defined in Eq. (1).

ct:argmin||a,—Bc||2+M(c), s.t. ceR, @))]
c 2
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Figure 1: Overview of our framework on image classification. Best viewed in color.

where M and R refer to the regularization term and feasible region on ¢ respectively. The
choice of M and R derives different coding schemes in literature. E.g., R = {c|||c||, =
1,||e]l; = lande > 0} deduces vector quantization (VQ) used in the "bag of words’ model
[5]. M(c) = A||¢]|, realizes the sparse coding in [22]. M(c) = ﬂZle[exp(M) ccr)?
and R ={c| Z,’f: | ¢k = 1} corresponds to the locality-constrained linear coding (LLC) [20].
After the coding step, I is represented by a set of codes C = [¢},¢2,--- ,cp] € REXP,

(c) Pooling: The resultant codes C are still patch-level representation and highly redun-
dant to represent I. For preserving diagnostic information and achieving certain invariance
(e.g., transformation invariance) on C, a pooling step is adopted to form the image-level rep-
resentation G = [g1,82,--- ,8m] € REXM | yia summarizing the statistics over the local feature
codes in M different pre-defined ROIs.

Let A,, denote the m™™ ROI for spatial pooling. For each visual word by, we map its
codes of local image patches belonging to A,, into a statistical signature gﬁ,’f) by the p-norm
function

1
g = Fr(CiAmb) =1 ). (17, 2)
pTEAm
- th _ o) @ (KT
where p; denotes location of the " patch. g, = [g,,",&n > " >-&n 1 represents the pooled

feature in A,,. Eq. (2) coincides with two widely used pooling operations: e.g., p =1
corresponds to sum pooling (i.e. fuum(-) = f1(-)), while p = co corresponds to max pooling
(i-e. finax(-) = foo(+)). To go beyond the spatial pyramid, there are some latest works [7, 10,
11, 19, 23] proposed in literature, by learning more flexible spatial layout adaptive to the
statistics for different image categories.

3 Hierarchical Spatial Pooling

In this section, we first construct the HRD based on tangram model [23]. After that, an
efficient algorithm is presented for spatial pooling with HRD.

3.1 Building Hierarchical ROI Dictionary Based on Tangram Model

As in [23], a layered dictionary of shape primitives (called tans') is constructed to quantize
the spatial configuration space. Each tan is defined as a kind of connected polygon shape

We inherit the terminologies and notations in [23].
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Figure 2: (a) Illustration on the 3-layer spatial pyramid and its ROI dictionary. (b) II-
lustration on the 16-layer Squ-HRD. (Note that there is no tan available at the layers of
1€{5,7,10,11,13,14,15}). (c) Illustration of the associated AOG for HRD (Only a portion
of graph is shown for clarity). Best viewed in color with magnification.

composed of several non-overlapping primitives in a grid of image lattice A. In this paper,
besides the four types of triangles used in [23], we consider using the square shape as prim-
itive. It can create a HRD with only rectangular ROIs, to be a more natural counterpart w.r.t.
the spatial pyramid. For short, we call the triangle-based HRD and the square-based one by
Tri-HRD and Squ-HRD, respectively.

Formally, the tan dictionary A = Ule A is an union of L subsets. A ={Bg; |i=
1,2,---,N;} denotes a set of tans for the /1 layer, where B ;) refers to the i tan. Given the
type of shape primitives at the first layer and predefined compositional rules [23], A can be
automatically created through a bottom-up process of recursive shape composition. More-
over, as in [23], to describe the compositionality among tans, an associated And-Or graph
(AOG) Y, is accordingly built for organizing the tan dictionary A in a deep hierarchy. In Tx,
the And-node represents that a tan can be composed by two smaller ones in layers below,
while the Or-node implies that it can be generated in alternative ways of shape composition.

When placing each tan onto different locations in the image lattice, one tan B(; may
produce a set of J(; different instances {A,; ) | j = 1,2,---, )}, which are the ROIs used
for spatial pooling in our framework. Moreover, Because of the mirrored correspondence
between a tan and its instances, A, ;) inherits all the And-Or compositionality from By ),
and there is also an isomorphic AOG ‘Y"A built to organize the tan instances for A. More
details on the tangram model can be found in [23]. Thus, in this paper, we build the HRD,
denoted by Dy, via a layered collection of ROISs instantiated from the tans in A. That is

Da = UL, Davy» 3)
VI, Do ={Agipli=12,---,Nyand j=1,2,---,Jg}
yAnd . ")\ for each

(Li,j)’ (ll/)’{ (llj)()o 1

Similar as [23], we also deﬁne an And-Or unit V(; ;) = Wt
ROI A, j), where vl . | and vA". refer to the terminal node, Or-node and And-node
J (i) (llj) ()XY

respectlvely. The And-Or units are the elements to constitute T'A. Specifically, the terminal

node v(ll ; corresponds to the ROI A itself. The And-node VA"d , represents that A j)

can be partitioned into two ones in layers below, while the Or-node v(l implies that it can
either terminate into the terminal node or alternatively decompose into 1ts child And-nodes
in one of O, different ways. For example, Fig. 2 (b) illustrates a 16-layer Squ-HRD for
4 x4 grid, with the associated And-Or graph shown in Fig. 2 (c).
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Actually, the ROIs defined in our HRD are equivalent to the overcomplete receptive fields
adopted in [10]. In addition to this, the HRD is constructed based on mutual compositionality
among the ROIs, and can be inherently organized into a deep hierarchy via associated AOG,
which leads to an efficient hierarchical pooling algorithm in Sec. 3.2.

3.2 Efficient Spatial Pooling in Deep Hierarchy

Based on the HRD built in Sec. 3.1, we can perform spatial pooling operation over the ROIs.
Due to the over-completeness and increasing degree of freedom induced by recursive shape
composition, the cardinality of HRD (i.e., the number of ROIs involved) grows drastically
with its granularity level. E.g., there are totally 100 ROIs in a 16-layer Squ-HRD with 4 x4
grid, while the cardinality of a 64-layer Squ-HRD with 8 X 8 grid rises sharply to 1296.
Hence, direct spatial pooling operation on HRD is computationally demanding.

However, the over-completeness and compositionality of the ROIs result in that each
ROI in the HRD can be exactly composed by its child ones in the layers below. This implies
that most computational cost can be saved by taking advantage of recursive compositionality
among the ROIs. Considering the directed acyclic structure [23] of associated AOG T'A with
deep hierarchy, we present an efficient algorithm for spatial pooling on HRD Dj,.

For a ROI A, j), we denote its pooled feature by a K-dimensional vector g, j, where
k
) ) eers
word bg. Given a HRD Dy as well as associated AOG T, the proposed pooling algorithm
can be divided into two steps: 1. For each ROI at the first layer, we directly compute its
pooled feature by Eq. (2); II. For the other layers above, the pooled feature for each ROI is
bottom-up propagated from its child nodes.

For a node v in ‘Y”A, let g, and Ch(v) denote its pooled feature vector and the set of child
nodes, respectively. Besides, we use the functions of MAX(-) (i.e., The max operation of
MAX(g,) is element-wise such that Vk, gik) =max,’ .oy g(v’f)) and SUM(-) (i.e., SUM(g,) =

2./ ech(v) &) to denote the element-wise max and sum operations, respectively. Thus, our

the value of its k' element (denoted by g %) refers to the pooled signature for visual

hierarchical spatial pooling algorithm is summarized in Alg. 1 °.

In step I, we observe that the direct pooling manipulations on codes C are reduced, cor-
responding to the number of the-1%-layer ROIs (e.g., an 8 X 8 Squ-HRD with the cardinality
of 1296 has only 64 ROIs at the 1% layer). In step II, for each ROI at layers above, the
recursive pooling manipulation just requires element-wise max or sum operation over the
pooled features of its child nodes, which subjects to much less computational cost than di-
rect pooling operation from codes. By Alg. 1, we obtain the pooled features G, which is a
K x M matrix introduced in Sec. 2. M is equal to the total number of ROIs in Dy such that

N
M =300 2 Jai-
4 Learning Image Representation with PLLS Analysis
The partial least squares analysis is a classical statistical method for modeling relations be-

tween two sets of observed variables. The underlying assumption of PLS is that the observed
data is generated from a small number of latent variables [15]. In this section, we introduce

2For a ROI in HRD, the trituple subscript (1,4, j) is interchangeably used with the linear index of g,(,l:) in Eq. (2).
3For simplicity, we use max pooling as an example, and the case of sum pooling just requires slight modification
of displacing MAX(-) and f,,4x(-) by SUM(-) and f,m(-) respectively.
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Algorithm 1: The Algorithm on Hierarchical Spatial Spooling

Input: HRD D, AOG ‘I"A, the codes C w.r.t. a visual dictionary B
Output: the pooled features G on Dy
1 Initialize G = {0} and M = 0;
2 Step I: computing the pooled features for the ROIs at the 1*' layer in Dy
3 foreach ROI A(]‘i,j) withi=1to Ny and j=1t0 Jq; do
4
5

foreach visual word by withk =1 to K do
8% = fuax(C; A Do)

Y(Li.j)

6 end

7 Let M=M+1 and G =[G, g, j)], where gzlf)l.j) = gikT) NVk=1,2,---,K;
T (Lij)

8 end

9 Step II: bottom-up computing the pooled features for the ROIs in other layers above
10 foreach level [ =2 to L do

1 foreach ROI A j with Or-node v¥". ., i=1to N;and j=1 to J; do
(Li, )) (Li.j) (Li)
12 foreach And-node (', | with o =110 O do
13 gVAnd = MAX(gVAnd ),
(Li.jo (Lij)o
14 end
O
15 8ij) = gV(OI; ) ﬁ Zo:i) gw(e}n_d_) ;Let M=M+1and G =[G, gq, )]
i, sl Li,]),0
16 end
17 end

a method of learning a compact and discriminative image-level representation with PLS
analysis. Moreover, since different visual words generally have distinct spatial statistics for
different image categories, we learn the PLS model for each visual word individually, to
preserve class-specific discriminative information in the extracted representation.

Let Q = {(I,, yn)},’:':1 denotes a collection of N training images, where y, € {1,2,---,C}
refers to the class label. As described in Sec. 3, for each image I,,, we obtain its pooled
feature matrix G, = [xf,l);xf); e ;xﬁ,K)], where the row vector xf,k) = [85,13»8%’ TN ggf?u] as-
sembles the pooled features over M ROISs for the k™ visual word. For notation simplicity, we
drop the visual word’s index k for x,(lk) in the following discussion.

For each visual word, we collect a set of pooled features over all training images, and
denote it by a N X M matrix X = [X1;Xp2; -+ ;Xy]. Asin [16], we define a N X (C — 1) indicator
matrix Y = [y1;y2;---;yn] for multi-class discrimination. Meanwhile, y,, is a binary row
vector indicating class membership for the n'" training image. If y, € {1,2,---,C — 1}, the yi!
element of y, is 1 and the others are 0; otherwise, it is an all-zero vector when y, = C. By
using the nonlinear iterative partial least squares (NIPALS) algorithm [21], PLS iteratively
pursues the weight vectors (i.e. projection directions) w, and s, such that

[cov(tq,uq)]zz max [cov(qu,qu)]2= max var(qu)[corr(qu,qu)]zvar(qu),
[Iwgll=lIsqll=1 [Iwgll=lIsqll=1
“4)

where t, and u, are the score vectors (i.e., latent variables) extracted in the g™ iteration.
Meanwhile, cov(:,-) and corr(-,-) respectively denote the sample covariance and the sample
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correlation between two vectors, and var(-) denotes the sample variance function [15]. After
that, the matrices X and Y are respectively deflated through subtracting their rank-one ap-
proximations based on t, and u,. This process iterates until the norm of data is smaller than
a predefined threshold or a desired number of score vectors are extracted. Besides, according
to the suggestion of removing the Y-space penalty var(Ys,) in PLS discrimination [1, 16], it

. . . . .o RN _1
requires a simple modification on the indicator matrix (i.e., Y = Y(YTY) 2).

As aresult, we learn a set of weight matrices (W }]{(:1 , where W& = [w(lk), W(zk), e, wg)]

represents the learned linear subspace model for k™ visual word. Then, we perform dimen-
sion reduction on the pooled features via projecting G, onto each W® individually, obtain-
ing a Q-dimensional vector zﬁlk). Thus, a new image-level representation is constructed by
concatenating z,(f) for all the K visual words, which is used for classification in our frame-
work.

Compared with widely used subspace learning method of principle component analysis
(PCA), the optimization criterion of PLS considers not only the sample variance var(Xw,)
but also the correlation between X and Y (i.e., corr(Xwy, Ys,)), leading to more discrimi-
native projection directions learned. Similar to PLS, the Fisher linear discriminant analysis
(FDA) also utilizes the class label information to facilitate discrimination, by maximizing
between-class seperation relative to within-class variance. However, FDA has the limitation
that there can be up to C — 1 non-trivial directions learned for dimension reduction. Besides,
the PLS algorithm is immune to the singularity difficulty in PCA and FDA when M > N.

S Experiments

In this section, we demonstrate the superiority of our method through a series of experiments
on three benchmark datasets (i.e. Caltech-101 [6], Caltech-256 [9] and Scene-15 [12]) in
image classification literature.

For feature extraction, we use a single type of SIFT feature throughout all the experi-
ments. The SIFT features are extracted from densely sampled 16 x 16 pixel patches, on a
grid with the step size of 6 pixels. All the images are converted into gray scale, with the
maximum size of height and width no larger than 300 pixels. In the coding step, we con-
struct a codebook with 1024 visual words via standard K-means clustering. The LLC coding
is adopted, with the same parameter settings used in [20]. As in [3, 20, 22], the operation
of max pooling is adopted in the pooling step. For multi-class discrimination, a linear SVM
classifier [4] is trained by "one-vs-rest" manner. Following common settings in literature, we
run 10 time experiments with different random splits of training and testing images. The per-
formance is measured by the average of per-class classification accuracy as in [12, 20, 22].

For comparison, a baseline method is implemented by spatial pooling with the 3-layer
spatial pyramid. In our method, we use 7 X 7Squ-HRD, and the number of extracted score
vectors in PLS for each visual word is set by 21, which results in an image-level represen-
tation with the same dimension produced by the baseline. It is noted that [20] also reports
results for the baseline method (i.e., LLC coding with 3-layer spatial pyramid pooling). The
goal of using our own implementation on the baseline is to provide more fair and precise
comparison, through sharing common experimental settings (e.g., the implementation of lo-
cal feature, training/testing splits, etc.). Besides, we also test the case of extracting SIFT
features from the patches with three scales (i.e., 16 X 16, 25X 25 and 31 x 31), which is
adopted in [20] for Caltech-101 and Caltech-256.
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Dataset Caltech-101 | Caltech-256 Scene-15
Method Patch Scales
Spatial Pyramid 16 70.9+0.8 34.8+0.2 81.4+04
Our Method 16 74.2+0.6 38.1+0.2 81.5+0.7
Spatial Pyramid 16,25,31 74.2+0.9 38.3+0.2 81.5+0.5
Our Method 16,25,31 77.7+0.7 41.4+0.3 82.4+0.7
LLC [20] 73.44 41.19 -
ScSPM [22] 73.2+0.54 | 34.02+0.35 | 80.28+0.93
KSPM [12] 64.6+0.8 - 81.4+0.5
LSAQ [13] 74.21+0.81 - 82.70+0.39
Boureau et al. [2] 757+1.1 - 85.6+0.2
Boureau et al. [3] 77.3+0.6 41.7+0.8 -
Jia et al. [10] 75.3+0.70 - -
Feng et al. [7] 82.60 43.17 83.20
Sharma et al. [19] - - 80.1+0.6
Gemert et al. [8] 64.14+1.18 | 27.17+0.46 | 76.67 +0.39
Griffin et al. [9] 67.6 34.1 -

Table 1: Comparison on Classification Performance (%)

5.1 Results on Caltech-101

The Caltech-101 dataset [6] consists of 102 different categories (including 101 object cat-
egories and 1 additional background category) for object categorization, and contains 9144
images in total, with a varying number of images from 31 to 800 per class. For each run of
experiment, we use 30 images per category for training and the rest for testing®.

Our experimental results are shown in the second column of Table 1. In the case of one-
scale local features extracted, our method achieves the average classification rate of 74.2%
relative to 70.9% for the baseline method. When coupled with three-scale local features,
the performance of our method increases to 77.7%, which is still beyond 74.2% obtained by
the baseline. Besides, detailed comparisons with existing methods are also listed in Table
1. We observe that our method can achieve better performance than most of other ones in
image classification literatures. E.g., compared to the result reported by the LLC paper [20],
our method obtains the performance gain with a margin of 4.3%. In addition, our method
outperforms the performance in [10] by a margin of 2.4%, which also employs an over-
complete ROI dictionary for spatial pooling and is the most related work to ours. As Jia
et al. [10] said, it is noted that [7] has reported the best performance on this dataset so far,
by simultaneously learning the parameter p in p-norm function and the spatial weight map
with a much larger visual codebook (i.e., K = 4096). Actually, it also benefits from taking
advantage of richer spatial statistics than spatial pyramid.

5.2 Results on Caltech-256

The Caltech-256 dataset [9], which is an extension of Caltech-101 with much higher intra-
class variation and wilder object location distribution, involves 257 categories (256 object

4The protocal on testing image is different from [20], which uses at most 50 images per class in testing. However,
we find that this influence on performance evaluation is neglectable in our experiments.
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Figure 3: (a) Performance with HRD type and Q. The red dot represents the baseline method
of 3-layer spatial pyramid. (b) Performance comparison on different spatial representation
models. (c) Comparison on runtime of spatial pooling algorithm. See Sec. 5.4 for details.

categories plus a background one). It contains 30607 images in total, with at least 80 images
per class. Similar as Sec. 5.1, we also use 30 samples from each class for training and
rest ones for testing. As shown in the third column of Table 1, our method consistently
outperforms the baseline. Concretely, the performance improvements are 3.3% and 3.1% for
the cases of extracting local features in one scale and three scales, respectively. Moreover,
our method obtains comparable result (41.4%) relative to the one reported in [20] (41.19%),
which uses a larger visual codebook (K = 4096) than ours.

5.3 Results on Scene-15

The Scene-15 dataset [12] is a widely used dataset in scene classification literatures [7, 8, 22],
which contains 15 different scene categories involving outdoor natural scenes (e.g., coast,
mountain and street) and indoor ones (e.g., bedroom, office room). It is composed of totally
4485 images, varying from 200 to 400 images for each category. Following [12], we use 100
images per class for training and the rest for testing. As shown in the fourth column of Table
1, our method can achieve better performance than the baseline method of spatial pyramid.

5.4 Analysis and Discussion

In this subsection, we provide more comprehensive analysis and discussion on our method.
At first, we evaluate the classification performance w.r.t. different parameter settings (e.g.,
the type and granularity of HRD, the number of score vectors extracted in PLS) on Caltech-
101 dataset, and illustrate the results in Fig. 3(a). Generally, a HRD with higher granularity,
which uses more ROIs for spatial pooling, makes for classification performance. However,
we can see that the performance improvement tends to be saturated until the 7 X 7Squ-HRD,
and continuously increasing of granularity appears not to boost performance further. On the
other side, the impact of performance w.r.t. parameter Q in PLS presents similar tendency:
as Q becomes larger, the performance continuously increases until about 20 score vectors
(projection directions) are extracted. It implies that the PLS analysis in our method can
effectively learn a low dimensional representation with salient discriminative information
preserved. This is also supported by Fig. 3(b), which demonstrates consistent superiority of
the learned feature representation by PLS in various granularity levels of HRDs.

Moreover, we provides a comprehensive comparison on the effect of different ROI dic-
tionaries with 2x 2, 4 x4 and 8 X 8 grids respectively. As shown in Fig. 3(b), it demonstrates
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that a hierarchical spatial representation (HRD or spatial pyramid) always outperforms its flat
grid counterpart, and utilizing richer spatial statistics as the HRD does makes for classifica-
tion. Finally, as shown in Fig. 3(c), the per-image average runtime’ of hierarchical pooling
algorithm in Sec. 3.2 is evaluated and compared with the naive way of directly pooling over
all the ROIs from codes. We find that the proposed algorithm can speed up the naive one by
at least 10 times, and its runtime grows much slower with the complexity of HRD.

6 Conclusion

This paper presents a hierarchical spatial pooling method based on HRD for image classifica-
tion. Compared with spatial pyramid, the HRD employs more flexible ROIs to utilize richer
spatial statistics. An efficient pooling algorithm is proposed based on compositionality of
ROIs. We also adopt PLS analysis to learn a more compact and discriminative image repre-
sentation. Experimental results validate the superiority of our method w.r.t. spatial pyramid.
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