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Abstract

While significant strides have been made in the recognition of faces under controlled
viewing conditions, face recognition “in the wild” remains a challenging unsolved prob-
lem [12, 13, 21]. Interestingly, while humans are generally excellent at identifying fa-
miliar individuals under such conditions, their performance is significantly worse with
unfamiliar individuals [5] and groups [19], leading to the idea that brain may have en-
hanced or specialized representations of familiar individuals [6]. Inspired by these ob-
servations, we explored the use of a number of subspace analysis techniques, applied to
various visual representations, to generate person-specific subspaces of “familiar” indi-
viduals for face identification. In particular, we introduce a person-specific application of
partial least squares (PS-PLS) to generate per-individual subspaces, and show that oper-
ating in these subspaces yields state-of-the-art performance on the challenging PubFig83
familiar face identification benchmark. The results underscore the potential importance
of incorporating a notion of familiarity into face recognition systems.

1 Introduction
Over the past two decades, dramatic advances have been made in the performance of face
recognition algorithms operating on images acquired under relatively controlled conditions
[9]. Indeed, under such conditions, automated face recognition can even surpass human
performance in the task of matching pairs of unfamiliar faces [9]. However, in settings
where images are less controlled (with variation in view, lighting, expression, etc.) and where
human subjects are familiar with the faces that are tested (e.g. the faces of celebrities), the
advantage of humans over machines is still substantial [15]. While the issue of uncontrolled
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variation has received increased attention in recent years with the creation of the “Labeled
Faces in the Wild” dataset [13], the notion of “familiarity” in automated face recognition has
been relatively unexplored.

We argue that study of familiarity in computer vision is interesting and timely for at least
two reasons. First, the automated recognition of “familiar” faces is increasingly relevant in
an age where social media has made available an ever-growing torrent of images of friends
and family members. While many current face recognition benchmark sets are organized
around deciding whether two probe faces are the same or different, in social media contexts,
the problem is often instead that of recognizing which individual – from a fixed gallery of
friends, each with many labeled examples – a given face image belongs to. This identification
problem has a natural relationship to the notion of “familiarity” in human face recognition, in
that a large number of past examples of a relatively small cohort of individuals are leveraged
to recognize new examples.

Second, a longstanding and growing body of neuroscience and psychology research sug-
gests that human face recognition with familiar and unfamiliar faces is substantially different,
possibly even relying on qualitatively different internal representations [5, 6, 19]. Indeed,
while human performance with unfamiliar faces is generally poor, performance with famil-
iar faces is excellent, and is superior even in tasks that do not depend on the identity of the
faces being observed (e.g. determining whether a face is male or female) [2, 25]. Under-
standing how past experience with a particular set of faces can be leveraged to yield better
recognition performance in unconstrained environments has the potential to greatly improve
our understanding of the fundamental mechanisms and constraints of face recognition.

Inspired by the idea that humans may rely on enhanced representations for familiar indi-
viduals, we here explore the construction of person-specific subspaces for performing face
identification. The creation of subspaces tailored for faces is a classic technique in the face
recognition literature; a variety of matrix-factorization techniques have been applied to faces
(e.g. Eigenfaces [31], Fisherfaces [3], Tensorfaces [33], etc.), which seek to model structure
across a set of training faces, such that new face examples can be projected into these spaces
and can be compared. A principle advantage of projecting into such subspaces is in the re-
duction of noise by limiting comparison to few relevant dimensions of variability in faces,
as measured across a large number of images. However, while these methods naturally cap-
ture general structure across a set of faces, they typically discover either just structure that is
common to all faces (as in the case of eigenfaces), or just structure that is discriminative be-
tween two sets of faces (as in the case of Fisherfaces). Furthermore, neither of these classic
methods have been shown to perform particularly well (by themselves at least) in the case of
unconstrained face images.1

One attempt to model familiar faces with computational systems is presented in [7],
where the authors considered unconstrained face pictures of celebrities taken on different oc-
casions. Face identity was modeled by averaging up to 19 carefully registered images of each
celebrity and then applying principal components analysis (PCA) in the average samples. In
their experimental setup, the authors showed that averaging face images of the individuals
leads to better identification performance than considering their images separately. Taking
this idea further, Burton et al. [6] argued that despite the fact that face averaging seems to
eliminate information irrelevant to identity, “true” variance in appearance is possibly infor-
mative, and should be embedded in the matching process rather than eliminated. They also
suggest that the mental representation of familiar faces seems to be specific to each individ-

1http://vis-www.cs.umass.edu/lfw/results.html
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ual. To test this idea, they performed PCA on a set of 48 carefully registered unconstrained
face images of one celebrity, and provided insights in this direction.

Here, we build person-specific face subspaces from orthonormal projection vectors ob-
tained using a per-individual configuration of partial least squares [34], which we refer to as
“person-specific” PLS or PS-PLS models. A key motivating idea for this work is that such
person-specific subspaces, due to its supervised nature, can capture both those aspects of the
face that are good for discriminating it from others, as well as natural variation in appearance
that is present in the unconstrained images of that individual.

While partial least squares methods have been used in other contexts in face recognition
before [11, 28], in the absence of a dataset containing many examples per individual, it
is not possible for PLS methods to model natural variability in face appearance found in
unconstrained images. To overcome this problem, we use the Pubfig83 dataset, a subset of
the Pubfig face dataset [15] reconfigured for the problem of unconstrained face identification
[22].

In order to evaluate our method, we replicate the previous best results with the PubFig83
data set [22] and consider them as baselines. The baseline methods consist of binary linear
support vector machines (SVMs) trained on different visual representations of faces in a
one-versus-all multi-class setting. To compare these methods, we project feature descriptor
vectors from this method into custom PS-PLS subspaces that we construct so that each binary
linear SVM is trained in a different and person-specific space corresponding to the positive
class.

Within this framework, we also compare our approach with subspaces built via other
linear techniques. In particular, we consider person-specific principal component analysis
(PCA), similar in spirit to the approach of Burton et al. [6], along with traditional non-
person-specific PCA and linear discriminant analysis (LDA), since they are well-known in
literature and because PLS shares properties with each. We further consider models obtained
by random projections, which have been shown to perform surprisingly well (e.g. [35]).
Special attention is given to parameters that could bias the results, namely, the number of
projection vectors of each model and the SVM regularization parameter C. Finally, as an
additional test of these methods, we evaluate the approach on the Facebook100 dataset [22],
which is constructed from a large set of real-world face images taken from the Facebook
social network.

2 Partial Least Squares (PLS)
Partial least squares is a class of methods primarily designed to model relations between sets
of observed variables by means of latent vectors [23, 34]. It can also be applied as a dis-
criminant tool for the estimation of a low dimensional space that maximizes the separation
between samples of different classes. PLS has been used in different areas [16, 18] and, re-
cently, it is also being successfully applied to Computer Vision problems for dimensionality
reduction, regression and classification purposes [11, 14, 27, 28, 29, 30].

Given two matrices X and Y respectively with d and k mean-centered variables and both
with n samples, PLS decomposes X and Y into

X = TPT +E and Y = UQT +F, (1)

where Tn×p and Un×p are matrices containing the desired number p of latent vectors, matri-
ces Pd×p and Qk×p represent the loadings, and matrices En×d and Fn×k are the residuals.
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One approach to perform the PLS decomposition employs the Nonlinear Iterative Partial
Least Squares (NIPALS) algorithm [34], in which projection vectors w and c are determined
iteratively such that

[cov(t,u)]2 = max
||w||=||c||=1

[cov(Xw,Yc)]2, (2)

where cov(t,u) is the sample covariance between the latent vectors t and u. In order to
compute w and c, given a random initialization of u, the following steps are repeatedly
executed [23]:

1) uold = u 4) t = Xw 7) u = Yc
2) w = XT u 5) c = YT t 8) if ||u−uold ||> ε ,
3) ||w|| → 1 6) ||c|| → 1 go to step 1

When there is only one variable in Y, i.e., if k = 1, then u can be initialized as u = Y = y.
In this case, the steps above are executed only once per latent vector to be extracted [23].
The loadings are then computed by regressing X on t and Y on u, i.e.,

p = XT t/(tTt) and q = YT u/(uTu). (3)

In this work, we use PLS to model the relations between face samples and their identities.
The relationship between X and Y is then asymmetric and the predicted variables in Y are
modeled as indicators. In the asymmetric case, after computing the latent vectors, matrices
X and Y are deflated by subtracting their rank-one approximations based on t, that is,

X = X− tpT and Y = Y− ttT Y/(tTt). (4)

Such deflation rule ensures orthogonality among the latent vectors {ti}p
i=1 extracted over

the iterations. For details about the different types of PLS, their applicability to regression
and other problems, and how they compare with other techniques, we refer the reader to
[1, 10, 23].

3 Familiar Face Representation via Person-Specific PLS
From a machine learning perspective, any technique that attempts to discriminate between
face identities can be considered “person-specific” in some sense. However, subspace mod-
els can offer more degrees of freedom to accommodate within-class variance in appearance.
In order to cope with this idea, we model the faces of each person c at a time by setting k = 1,
Yn×k = yc, and ycs = 1 if sample s (out of n) belongs to class c or ycs = 0 otherwise. As Y
has a single variable, this variant of PLS is also known as PLS1 [23]. It is worth recalling
from Section 2 that when k = 1, we can initialize u = yc and that, in this case, obtaining the
projection vectors {w}p

i=1 is straightforward. In other words, at each iteration i,

wi = XiT yc, (5)

where Xi is the matrix X deflated up to iteration i according to Eq. 4.
The person-specific face model that we consider in this work is the subspace spanned by

the set of orthonormal vectors {wi}p
i=1 produced by NIPALS for a person c. Given that the

variables in X are also normalized to unit variance, wi expresses the relative importance of
the face features (i.e., the variables) to discriminate person c from the others. As {wi}p

i=1 are
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orthogonal, this model accounts for within-person variance in the face appearance through-
out the samples, a property also suggested to be relevant in mental representations of familiar
faces [6].

Having obtained a subspace for each face, identities can be predicted with any classi-
fication engine that can operate in each subspace (e.g., one-versus-all SVMs). As the di-
mensionality of person-specific subspaces is expected to be much lower than of the classical
multiclass subspace analysis, subsequent learning algorithms may also tend to achieve better
generalization [32].

Dataset Visual Representations

100 examples/person

...

...

person-speci�c
subspaces

R100x100

R~20

PS-PLS
...

... ...
one-versus-all

(person-speci�c)
linear SVMs

90 training
samples

10 testing
samples

R>25,000

100 examples/person

feature 
extraction

PS-PLS projection matrices

O
ve

ra
ll 

Pe
rf

or
m

an
ce

(each binary classi�er operates
on a person-speci�c subspace) 

Fig. 1: Our approach. From the training samples, PS-PLS creates a different face subspace for each
individual. A different classifier is then trained in each subspace. See text for more details.

In Fig.1 we illustrate our approach. From the visual representation of the training sam-
ples, PS-PLS creates a different face subspace for each individual. All training samples are
projected onto each person-specific subspace, so that a classifier can be trained by consider-
ing the different representations of the samples over the subspaces. The classification engine
that we use in this work is made by linear SVMs in a one-versus-all configuration. Given a
test sample, an overall decision is made according to decisions made in each person-specific
subspace. In this work, we predict the face identity by choosing the person whose corre-
sponding SVM scored highest.

4 Experimental Setup

4.1 Datasets and Visual Representations
The primary dataset that we use in this work is Pubfig83 [22]. This dataset is a subset of the
Pubfig dataset [15], which is, in turn, a large collection of real-world images of celebrities
collected from the Internet. This subset was established and released to promote research
on familiar face recognition from unconstrained images, and it is the result of a series of
processing steps aimed at removing spurious face samples from Pubfig, i.e., non-OpenCV-
detectable, near-duplicate, etc. In addition, only persons for whom 100 or more face images
remained were considered, leading to a dataset with 83 individuals.
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The Facebook100 dataset is similar in spirit to Pubfig83, and a remarkably linear re-
lationship between performance achieved on each set by a variety of algorithms has been
reported in [22]. Both sets enable the investigation of face recognition methods where a
considerable number of natural face images from the individuals is available. Details about
this set can be found in [22]. In both datasets, we are considering the “aligned” version, in
which faces images have been pre-aligned by affine-warping [22].

Four different visual representations are considered in the evaluation of our approach.
The first three are V1-like+, HT-L2-1st, and HT-L3-1st, which are taken from [22]. These
representations are biologically-inspired, and can be thought of as visual models of increas-
ing complexity. The fourth visual representation is a blend of local binary patterns (LBP),
histogram of oriented gradients (HOG), and Gabor wavelets (LBP+HOG+Gab), replicated
from [28].

4.2 Compared Methods

The main baseline consists of training linear SVMs straight from the visual representation
of the images. We call this representation “RAW”, and the linear model considered in this
case can be though of as an identity matrix. In addition to the performance comparison
between RAW and our PS-PLS method, we also consider subspace models obtained via
PCA, LDA, and Random Projection (RP). PCA is intuitively appealing in the context of
face recognition and decomposes the train set in a way that most of the variance among
the samples can be explained by a much smaller and ordered vector basis. LDA is another
well-known technique that attempts to separate samples from different classes by means of
projection vectors pointing to directions that decrease within-class variance while increas-
ing the between-classes variance. As our PS-PLS setup seeks to maximize the separation
only between-class, we argue that this offers a good compromise between LDA and PCA.
Finally, due to its interesting properties [4, 35], we also consider RP vectors sampled from a
univariate normal distribution.

We further evaluate person-specific PCA models (PS-PCA) and multiclass PLS models
with the idea that they would provide insight regarding the value of person-specific spaces.
PS-PCA models are built only with the train samples of the person. For the multiclass PLS
models, we assume k as the number of classes and make Yn×k = {y1,y2, . . . ,yk}, with ycs = 1
if sample s belongs to class c or ycs = 0 otherwise. Still, in the inner loop of the NIPALS
algorithm, each projection vector is considered after satisfying a convergence tolerance ε =
10−6 or after 30 iterations, whichever comes first (see Section 2 for details). In this case, as
Y has multiple variables, this form of PLS is also known as PLS2 [23].

While there remains substantial room to evaluate other subspace methods (including ker-
nelized versions of PCA [26], LDA [17], and PLS [24]), we chose here to focus on some
of the most popular and straightforward methods available, with the goal of cleanly assess-
ing the benefit of building person-specific subspaces to model face familiarity. Future work
could compare additional methods.

For all methods, the Scikit-learn package [20] was used to compute the linear models
and LIBSVM [8] was used to train the linear SVMs. In all cases, the data was scaled to zero
mean and unit variance.
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4.3 Evaluation Protocol

We follow the evaluation protocol of [22], reporting the average classification accuracy and
standard error for ten random train/test splits of the data. The number of test face images
per person is fixed at 10, and here we always consider 90 training examples per individual
so that we can evaluate how much we enhance the representation of the faces in the “highest
level” of familiarity.

For each dataset, we consider the same splitting rule across the different visual repre-
sentations. All subspace analysis techniques that we compare can be though of as simple
replacements for PS-PLS in Figure 1.

The evaluation framework has two parameters: the regularization constant C of the linear
SVMs, and the number of projection vectors to be considered, which is relevant in the cases
where the projection vectors are ordered by their variance or discriminative power (PCA,
PS-PCA, PLS, and PS-PLS). We use a separate grid search to estimate these parameters for
each split. For this purpose, we re-split the train set so that we obtain 80 samples per class
to generate intermediate models and 10 samples per class to validate them. We consider
{10−3,10−2, . . . ,106} as possible values to search for C. For the RAW and LDA models,
this is the only parameter that we have to search, because, in the RAW case, no projection
is made in practice and, in LDA, the number of projection vectors is fixed to the number of
classes minus 1.

The possible number of projection vectors that we consider in the search can be repre-
sented as {1m,2m, . . . ,8m}. For person-specific subspace models, m = 10, i.e., starting from
10, the number of projection vectors is increased by 10 up to the total number of data points
per person in the validation set. Correspondingly, for the multiclass models, m = 10n, where
n is the number of persons in the dataset. The only exception is PLS, where m = n. Although
PLS is a multiclass model, we observed that the ideal number of projection vectors is con-
centrated in the first few, and so we decided to refine the search accordingly, while keeping
the same number of trials as for the other models.

5 Results

The results obtained on the Pubig83 dataset are shown in Table 1. In general, comparisons
are done with the first row, where performance is assessed with the RAW visual represen-
tations [22]. The remaining rows are divided according to the type of subspace analysis
technique. It is possible to observe that the only face subspace in which we could consis-
tently get better results than RAW across the different representations is PS-PLS.

With the multiclass unsupervised techniques, we see no boost in performance above
RAW. Since unconstrained face images have a considerable amount of noise and these tech-
niques do not regard its removal while estimating the models, this is perfectly reasonable.
We observe that the drop in performance with RP is related to the fixed maximum number of
projection vectors that we consider in grid search (6,640) in proportion to the dimensionality
of the input spaces (HT-L2-1st ≈ HT-L3-1st� V1-like+ < LBP+HOG+Gab). Both for RP
and PCA, the most frequently number of projection vectors found by grid search was 6,640.
This also gives us the intuition that, operating in these unconstrained face images, the best
that PCA can do is to retain as much variance in the input space as possible.

For the multiclass supervised subspace models, we observe performance increases with
V1-like+ and LBP+HOG+Gab representations, especially for LDA. For HT-L2-1st and HT-

Citation
Citation
{Pinto, Stone, Zickler, and Cox} 2011

Citation
Citation
{Pinto, Stone, Zickler, and Cox} 2011



8 CHIACHIA ET AL.: PERSON-SPECIFIC SUBSPACES FOR FAMILIAR FACES

Models V1-like+ HT-L2-1st HT-L3-1st LBP+HOG+Gab

RAW 74.81±0.35 83.66±0.55 87.66±0.29 82.63±0.28 n (Rn)

Multiclass Unsupervised

RP 69.04±0.44 79.92±0.50 85.61±0.37 75.07±0.37 6,640
PCA 74.59±0.36 83.36±0.47 87.50±0.28 82.44±0.34 6,640

Multiclass Supervised

LDA 76.16±0.50 81.14±0.30 85.72±0.33 83.40±0.22 –
PLS 74.90±0.45 83.07±0.47 86.63±0.35 83.02±0.26 332

Person-Specific

PS-PCA 29.95±0.31 44.76±0.45 52.65±0.62 33.02±0.39 80
PS-PLS 77.59±0.53 84.32±0.38 88.75±0.26 85.42±0.29 20

Table 1: Comparison of different face subspace analysis techniques on the Pubfig83 dataset. In
all cases, the final identities are estimated by linear SVMs. In the last column, we present the most
frequently number of projection vectors found by grid search (see Section 4.3 for details).

Models V1-like+ HT-L2-1st HT-L3-1st

RAW 79.96±0.19 85.81±0.29 88.89±0.25

PCA 79.81±0.18 85.70±0.29 88.88±0.25
LDA 81.04±0.29 83.07±0.26 87.25±0.29
PS-PLS 81.53±0.25 86.84±0.19 89.70±0.25

Table 2: Comparison of different face subspace analysis techniques in the Facebook100 dataset.

L3-1st, there was no improvement, which we suspect may simply result from there being less
room for improvement in these cases. When compared with PS-PLS, we think that person-
specific manifolds in the multiclass subspace are impaired by a more complex relation among
the projection vectors. Since both PLS and PS-PLS follow the same rule for the estimation
of the projection vectors, the results corroborate the idea that representing each individual in
its own subspace results better performance.

In the person-specific category, we see that PS-PCA considerably diminishes the pre-
dictive power of the features in the input space. In all cases, the best number of projection
vectors found by grid search was 80, i.e., the maximum allowed. When compared with PS-
PLS, we can see here the importance of person-specific models being also discriminative,
besides generative, for this task. We cannot disregard noise in the unconstrained scenario.

For the Facebook100 dataset, we present in Table 2 the performance obtained with the
most competitive method of each category considered in Table 1. The results are similar to
the ones obtained on Pubfig83, where PCA representations performed most like RAW, LDA
did better in V1-like+, and PS-PLS performed best across all representations.

6 Discussion

In this work, we propose a person-specific application of partial least squares (PS-PLS) to
generate per-individual subspaces of familiar faces. By means of a straightforward evalu-
ation methodology, we compared different subspace analysis techniques for modeling the



CHIACHIA ET AL.: PERSON-SPECIFIC SUBSPACES FOR FAMILIAR FACES 9

PCA LDA

PLS PS-PLS

1st projection vector

2n
d 

pr
oj

ec
tio

n 
ve

ct
or

Fig. 2: Visualization of the train and test samples projected onto the first two projection vectors of
each model. All models were obtained from the same train/test split using V1-like+. The highlighted
samples in PS-PLS are shown in the first row of Fig.3.

problem. We showed that the PS-PLS method consistently performed better than the other
subspace models and, here, we seek to understand these models better.

In Fig.2, we present a scatter plot of train and test samples projected onto the first two
projection vectors of each model. Adam Sandler’s samples are in red2. The overall distri-
bution of the points is in accordance to our expectations, where samples are spread out in
PCA subspace, are more concentrated, apart with respect to the other classes, and Gaussian
shaped in LDA subspace, and are also apart but less concentrated in PLS and PS-PLS.

We note that the predictive power of the first PS-PLS projection vectors is higher than
that of the second one. Indeed, in PS-PLS, we found that the only projection vector that leads
to mean projection responses significantly different between positive and negative samples is
the first one. Although all subsequent projection vectors considerably increase performance,
we believe that, from the second vector on, they progressively account more for person-
specific variance than discriminative information. In our experiments, performance began to
saturate around 20 projection vectors.

Highlighted samples in the PS-PLS scatter plot are shown in the first row of Fig.3, where
we also present images of two other individuals. The first column (a) is the result of mapping
the importance of each V1-like+ feature back to the spatial domain, based on their relative
importance found by the first PS-PLS projection vector. Based on these illustrations, we can
roughly see that higher importance is being given to Adam Sandler’s mouth and forehead
(first row), to Alec Baldwin’s eyes, hairstyle, and chin (second row), and to the configural
relationship of Angelina Jolie’s face attributes (third row).

Columns in (b) of Fig.3 show the person-specific most, average, and least responsive face
samples with respect to the projection onto the first PS-PLS projection vector (a). For Adam

2As Pubfig83 is a dataset with celebrities, we use their names in the discussion.
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Fig. 3: V1-like+ first PS-PLS projection vectors and representative samples (see Sec.6). The red and
blue samples in the first row are the ones highlighted in Fig.2’s PS-PLS plot; (b) and (c) refer to the
highlighted squares, while (d) illustrates one of the highlighted circles.

Sandler, these samples are highlighted in the PS-PLS scatter plot of Fig.2. It is difficult to
infer anything concrete from these images, but we can see that the least responsive samples
represent large variations in pose alignment and occlusion.

Still in Fig.3, column (c) represents the overall least responsive training sample with
respect to (a). These samples tend to be of the opposite gender, and hair seems to play a
role for the first two individuals. Finally, in column (d) we present one test sample of each
person that was not recognized when considering the RAW description of the faces, but that
was recognized with the aid of PS-PLS models. Despite showing just one sample for Adam
Sandler, there were three such cases, which are highlighted in the PS-PLS plot of Fig.2.

In general, we argue that these subspaces are useful both for noise removal and for ac-
centuating discriminative person-specific face aspects (Fig.3a). In the unconstrained familiar
face identification setting, both of these issues are of fundamental importance. Considering
the results obtained with the RAW visual representations, we see that linear SVMs achieve
reasonably high level of performance; however, when these same classifiers are trained and
operate in PS-PLS subspaces, they perform better, suggesting that these 20-dimensional
person-specific subspaces not only embed comparable levels of the available face identity
information, but also amplify it.
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