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Abstract

Tasks such as image retrieval, scene classification, and object recognition often make
use of local image features, which are intended to provide a reliable and efficient image
representation. However, local feature extractors are designed to respond to a limited set
of structures (e.g. blobs or corners), which might not be sufficient to capture the most
relevant image content.
We discuss the lack of coverage of relevant image information by local features as well
as the often neglected complementarity between sets of features. As a result, we pro-
pose an information-theoretic-based keypoint extractionthat responds to complementary
local structures and is aware of the image composition. We empirically assess the valid-
ity of the method by analysing the completeness, complementarity, and repeatability of
context-aware features on different standard datasets. Under these results, we discuss the
applicability of the method.

1 Introduction

Local feature extraction is a prominent and prolific research topic for the computer vision
community, as it plays a crucial role in many vision tasks. Local feature-based strategies
have been successfully used in numerous problems, such as wide-baseline stereo matching
[1, 18, 31], content-based image retrieval [23, 26, 30], object class recognition [6, 22, 27],
camera calibration [9], and symmetry detection [4]. The key idea underlying the use of local
features is to represent the image content by a sparse set of salient regions or (key)points. By
discarding most of the image content, we save computation and improve robustness as there
are redundant local image patches rather than a limited number of global cues [29].

The desired properties of a local feature extractor are dictated by its application. For
example, matching and tracking tasks mainly require arepeatable and accurate feature ex-
traction. The objective is to accurately identify the same features across a sequence of im-
ages, regardless of the degree of deformation. It is not relevant if the set of features fails to
cover the most informative image content. On the other hand,tasks such as object (class)
recognition, image retrieval, scene classification, and image compression, require arobust
image representation[32]. The idea is to analyse the image statistics and use local features to
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(a) (b)
Figure 1: Proposed keypoint extraction: (a) Context-awarekeypoints on a well-structured
scene (100 most informative locations); (b) A combination of context-aware keypoints (green
squares) with SFOP keypoints [9] (red squares) on a highly textured image.

capture relevant image content. Here, the requirements of repeatability and accuracy become
less relevant.

This paper focuses on the problem of providing a robust feature-based image represen-
tation. Our contribution is a feature extractor aimed at covering the most informative image
content. The proposed algorithm, coined asContex-Aware Keypoint Extractor(CAKE),
responds to complementary local structures and is aware of the image composition. We
follow an information-theoretic approach by assuming thatthe so-called salient locations
correspond to points within structures with a low probability of occurrence, which is in ac-
cordance with a plausible characterisation of visual saliency [3]. We are motivated by the
fact that the majority of local feature extractors makes strong assumptions on the image con-
tent, which can lead to an ineffectual coverage of the content [5, 8]. Here, the idea is not
to formulate any a priori assumption on the structures that might be salient. Moreover, our
scheme is designed to take advantage of different local representations (descriptors).

A context-aware extraction can respond to features with a reasonable degree of comple-
mentarity as long as they are informative. For images with many types of structures and
patterns, one can expect a high complementarity among the features retrieved by a context-
aware extractor. Conversely, images with repetitive patterns inhibit these extractors from
retrieving a clear summarised description of the content. In this case, the extracted set of
features can be complemented with a counterpart that retrieves the repetitive elements in the
image. To illustrate the above-mentioned advantages, we depict these two cases in Figure1.
The left image shows a context-aware keypoint extraction ona well-structured scene, retriev-
ing the 100 most informative locations. This small number offeatures is sufficient to provide
a good coverage of the content, which includes several typesof structures. The right image
depicts the benefits of combining context-aware keypoints with strictly local ones (SFOP
keypoints [9] ) to obtain a better coverage of textured images.

2 Related Work

We will provide a brief, yet illustrative, description of solutions that have contributed towards
establishing local feature extraction as a mature researchtopic. For a more complete review,
we will refer to the work of Tuytelaars and Mikolajczyk [32] and references within.
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A large family of local feature extractors is based on local differential geometry. The
Harris-Stephens keypoint extractor is a well-known example of an algorithm based on lo-
cal differential geometry: it takes the spectrum of the structure tensor matrix to define a
saliency measure. The Scale Invariant Feature Operator (SFOP) [9] also relies on the struc-
ture tensor matrix. It responds to corners, junctions and circular features. This explicitly
interpretable and complementary extraction is a result of aunified framework that extends
the gradient-based extraction previously discussed in [7] and [24] to a scale-space represen-
tation [16]. The Hessian matrix is often used to extractblob-like structures, either by using
its determinant– it attains a maximum atblob-like keypoints– or by searching for local ex-
trema of the Laplacian operator, i.e., the trace of the Hessian matrix. The Harris-Laplace [19]
is a scale covariant region extractor that results from the combination of the Harris-Stephens
scheme with a Laplacian-based automatic scale selection. The Harris-Affine scheme [20],
an extension of the Harris-Laplace, relies on the combination of the Harris-Laplace opera-
tor with an affine shape adaptation stage [17]. Similarly, the Hessian-Affine extractor [20]
follows the same affine shape adaptation. However, the initial estimate is taken from the de-
terminant of the Hessian matrix. Some extractors rely solely on the intensity image, such as
the Maximally Stable Regions (MSERs) extractor [18], which retrieves stable regions (with
respect to intensity perturbations) that are either brighter or darker than the pixels on their
outer boundaries. In [10], Gilles proposes an information-theoretic algorithm: keypoints cor-
respond to image locations at which the entropy of local intensity values attains a maximum.
Kadir and Brady [11] introduce a scale covariant salient region extractor, which estimates
the entropy of the intensity values distribution inside a region over a certain range of scales.
Salient regions in the scale space are taken from scales at which the entropy is at its peak.
In [12], Kadir et al. propose an affine covariant version of the extractor introduced in [11].
Dickscheid et al. [5] suggest a local entropy-based extraction, which uses the entropy density
of patches to build a scale-space representation. This density is expressed using a model for
the power spectrum that depends on the image gradient and noise.

3 Context-Aware Keypoint Extraction

Our context-aware keypoint extraction is formulated in an information theoretic framework.
We define saliency in terms of information content: a keypoint corresponds to a particular
image location within a structure with a low probability of occurrence (high information
content). We follow Shannon’s definition of information [28]: if we consider a symbols,
its informationwill be given byI(s) = − log(p(s)), wherep(·) denotes the probability of a
symbol. In the case of images, defining symbols is complex andthe content of a pixelx is
not very useful, whereas the content of a region around the point would be more appropriate.
We can considerw(x) ∈RD, any viable local representation (e.g. the Hessian matrix)as a
“codeword” that representsx. We can see the image codewords as samples of a multi-variate
probability density function (PDF). In the literature, there is a number of methods to estimate
an unknown multivariate PDF with a sufficient number of samples. Among all, we have
decided to use the Parzen density estimator [25], also known asKernel Density Estimator
(KDE). The KDE is appropriate for our objective since it is non-parametric, which will allow
us to estimate any PDF, as long as there is a sufficient number of samples. Using the KDE,
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the probability of a codewordw(y) is

p̂(w(y)) =
1

Nh ∑
x∈Φ

K

(
d(w(y),w(x))

h

)
, (1)

whered is a distance function,K is a kernel,h is a smoothing parameter calledbandwidth,
Φ is the image domain, andN represents the number of pixels. The idea of the KDE method
is to blur the contribution of each samplex by spreading it to a certain area inRD with a
certain shape, which is defined byK. If K has compact support, or decreases as a function
of the distanced, then codewords in dense areas of the multi-variate distribution will have
higher probability than isolated samples. There are several choices for the kernel. The most
commonly used and the most appropriate for our method is a multidimensional Gaussian
function with zero mean and standard deviationσk. Using a Gaussian kernel, (1) becomes

p̃(w(y)) =
1

NΓ ∑
x∈Φ

e

(
−d2(w(y),w(x))

2σ2
k

)
, (2)

whereh has been substituted by the standard deviationσk andΓ is a proper constant such
that the estimated probabilities are taken from an actual PDF. Having defined the probability
of a codeword, we can define the saliency measure as follows:

m(y) =− log

(
1

NΓ ∑
x∈Φ

e

(
−d2(w(y),w(x))

2σ2
k

))
. (3)

In this case, context-aware keypoints will correspond to local maxima ofm that are beyond
a certain thresholdT.

To conclude, we need to define a distance functiond and set a proper value toσk.

The distance d We use the the Mahalanobis distance. LetW be the set of all the multi-
variate samples, i.e.,W =

⋃
x∈Φ w(x) andΣW the covariance matrix ofW. The Mahalanobis

distance betweenw(y) andw(x) is dM(w(x),w(y)) =
√

(w(x)−w(y))TΣ−1
W (w(x)−w(y)).

By considering the aforementioned distance, which is invariant under affine transformations,
the following property can be drawn:

Property 1. Let w(1) and w(2) be codewords such thatw(2)(x) = T(w(1)(x))), where T is
an affine transformation. Let p(1) and p(2) be the probability maps ofw(1) and w(2), i.e.,
p(i)(·) = p(w(i)(·)), i = 1,2. In this case,

p(2)(x)≤ p(2)(y) ⇐⇒ p(1)(x)≤ p(1)(y),∀x,y ∈Φ.

The smoothing parameter σk If σk is too large, the KDE over-smoothes the estimated
PDF, which cancels the inherent PDF structure due to the image content. On the other
hand, if σk is too small, the interpolated values between different samples might be very
low, such that there is no interpolation anymore. We proposea strategy, in the case of an
univariate distribution, to determineσ⋆

k , an optimalσk, aiming at “sufficient blurring” while
having the “highest sharpen” PDF between samples. For our purposes, we can use univariate
distributions, since we approximate the KDE computations of a D-dimensional multi-variate
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PDF by estimatingD separate univariate PDFs (seeAppendix). Having a series ofN samples
w, we define the optimalσk for the given distribution as

σ⋆
k = argmax

σ>0

∫ wi+1

wi

1√
2πσ

∣∣∣∣∣∣∣∣∣∣∣∣∣

d



e

−(w−wi )
2

2σ2 +e

−(w−wi+1)2

2σ2





dw

∣∣∣∣∣∣∣∣∣∣∣∣∣

dw, (4)

wherewi andwi+1 is the farthest pair of consecutive samples in the distribution. It can be
shown that, by solving (4), we haveσ⋆

k = |wi−wi+1|. It can also be demonstrated that for
σ < |wi−wi+1|/2, the estimated PDF between the two samples is concave, which provides
insufficient smoothing.

4 Hessian-based CAKE instance

In this section, we introduce an instance of the context-aware keypoint extractor. Different
instances are given by considering different local representations.

The Hessian matrix appears as a suitable intrinsic codewordas it describes the local shape
characteristics. Furthermore, the inclusion of multi-scale components provides a framework
to design an instance characterised by a quasi-scale-covariant extraction. The codeword for
the multi-scale Hessian-based instance is

w(x) =
[

t2
1Lxx(x; t1) t2

1 Lxy(x; t1) t2
1Lyy(x; t1) t2

2Lxx(x; t2) t2
2Lxy(x,t2) t2

2Lyy(x,t2)

· · · t2
MLxx(x; tM) t2

MLxy(x; tM) t2
MLyy(x; tM)

]T
,

(5)

whereLxx, Lxy andLyy are the second order partial derivatives ofL, a Gaussian smoothed
version of the image, andti , with i = 1, . . . ,M, represents the scale.

5 Experimental Validation and Discussion

We have evaluated and compared the performance of the Hessian-based CAKE instance
(which we will refer to as [HES]-CAKE) using three criteria:completeness, complementar-
ity, and repeatability. We can quantify completeness as theamount of image information that
is preserved by a set of features. Complementarity is a particular case of completeness anal-
ysis: it reflects the amount of image information coded by sets of potentially complementary
features [5]. The repeatability score is a measure that ascertains how precisely an extractor
responds to the same locations under several image transformations, which reflects the level
of covariance and robustness. The experiments were performed on the Oxford dataset [21]
and on the dataset used by Dickscheid et al. for completenessevaluation [5]. The latter com-
prises four categories of natural scenes [14, 15], the Brodatz texture collection [2] as well as
a set of aerial images. Example images from this dataset are depicted in Figure2.

With the aim of comparison, we have also evaluated the performance of some of the
leading algorithms on scale or affine covariant feature extraction: the Hessian-Laplace (HES-
LAP), the Harris-Laplace (HARLAP), the Scale Invariant Feature Operator (SFOP), and the
Maximally Stable Extremal Regions (MSER) extractor. The implementations are the ones
given and maintained by the authors and default parameters were used.
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Table1 outlines the parameter settings for the CAKE instance. We note that our extractor
retrieves more features than its counterparts. For a fair evaluation of repeatability, we have
defined a threshold to avoid a considerable discrepancy in the number of features.

Table 1: [HES]-CAKE parameter settings.
[HES]-CAKE
Number of scales 12
ti+1/ti (ratio between successive scale levels) 1.19
t0 (initial scale) 1.4
Non-maximal suppression window 3×3
T (threshold) 12 or 3000 keypoints (for the Oxford dataset)/None (otherwise)
σk optimal
NR (number of samples, seeAppendix) 200

The evaluation protocols require regions rather than keypoints. We use the normalised
Laplacian operator,∇2Ln = t2(Lxx+ Lyy), to determine the characteristic scale for each de-
tected keypoint, which, in this case, corresponds to the oneat which the normalised Lapla-
cian attains an extremum. This scale defines the radius of a circular region centred about the
keypoint.

The non-optimised Matlab implementation of [HES]-CAKE takes, on average, 272.3
seconds to process an 800× 600 image.

Brodatz Aerial Forest Mountain Tall building Kitchen
(30 images) (28 images) (328 images) (374 images) (356 images) (210 images)

Figure 2: Example images from the categories in the dataset.

5.1 Completeness and complementarity

To measure completeness, Dickscheid et al. [5] compute an entropy density,pH , based on
local image statistics, which is not context-aware, and a feature coding density,pc, derived
from a given set of features. The (in)completeness measure corresponds to the Hellinger

distance between the two densities:dH(pH , pc) =
√

1
2 ∑x∈Φ(

√
pH(x)−

√
pc(x))2. When

pH andpc are very close,dH will be small, which means that the set with a coding density
pc efficiently covers the image content, i.e., the set has a highcompleteness. We note that this
measure penalises the use of large scales (which is a straightforward solution to achieve full
coverage of the content) as well as the presence of features in pure homogeneous regions. On
the other hand, it rewards the “fine capturing" of local structures or superimposed features
appearing at different scales.

Figure3 outlines the completeness results for each image category (Figure2), in terms

of the distances betweenpH and pc. As in [5], we have plotted the liney =
√

1
2, which

corresponds to an angle of 90 degrees betweenpH andpc. Any distance beyond this thresh-
old will correspond to a pair of “sufficiently different" densities. Regardless of the image
collection, the [HES]-CAKE achieves the best completenessscores. The completeness and
complementarity scores obtained from the third image in each Oxford sequence are reported
in Figure4. Here, the Hessian-based instance shows a better performance on well-structured
scenes such as “Grafitti", “Bikes" or “Leuven". Conversely,the relevant content of highly
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Figure 3: Average dissimilarity measuredH(pH , pc) for the different sets of features ex-
tracted over the categories of the dataset.

textured scenes (“Wall”, “Trees”) is not so well preserved by the context-aware features.
Figure4 also shows the results of our complementarity evaluation. An important conclu-
sion to be drawn is that the combination [HES]-CAKE+SFOP provides more than sufficient
coverage of relevant content in the Oxford dataset. Combining MSER with either SFOP or
[HES]-CAKE features is equally advantageous. SFOP mainly extracts corners and junctions,
whereas the MSER algorithm usually extracts more homogeneous regions. This complemen-
tarity is particularly discernible when analysing the results for sequences such as “Trees” or
“Wall”.

In [5], Dickscheid et al. report the low complementarity scores among Laplacian-based
sets of features (e.g. HESLAP and HARLAP), which can also be inferred from the addi-
tional experiment with the Oxford dataset. On the other hand, the combination of [HES]-
CAKE features with the above-mentioned ones does not imply afinal set with redundancy.
The combination of HESLAP and [HES]-CAKE yields the most complete set for “Bark",
whereas the set of features retrieved by the former is the onewith the lowest completeness
score. We give a particular emphasis to this result since it shows that we are not extracting
the same keypoints as the HESLAP. In fact, we are building a set of features that can be
complementary to the one retrieved by the other method.

5.2 Repeatability

Although CAKE was designed for robust image representation, we have also evaluated the
repeatability using the benchmark proposed in [21]. Figure5 reports the average repeatabil-
ity score of the different algorithms for each sequence in the Oxford dataset, with an overlap
error of 40%. In most of the sequences, SFOP and CAKE show a comparable performance,
which is slightly worse than the one of HESLAP.

6 Conclusions and Perspectives

We have presented a keypoint extraction scheme that makes use of local information and is
aware of the image composition. The notion of saliency is explicitly used in the algorithm:
we compute a descriptor of the neighbourhood for every pixeland keypoints correspond to
locations at which the information content is a local maximum.

We have analysed the possible shortcomings that characterise our approach, especially
the problem in estimating the probability of the inherent distributions in a way that it could
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Figure 4: Dissimilarity measuredH(pH , pc) for different sets of features extracted from the
third image in each Oxford sequence. Top row: separate feature extractors; bottom row:
combined feature extractors.
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Figure 5: Average repeatability with an overlap error of 40%on the Oxford dataset.

reduce the computational complexity of the method and simultaneously make it comparable
to state-of-the-art solutions in terms of repeatability and completeness scores.

While context-aware features are not the most suitable option for tasks such as wide-
baseline stereo matching and tracking, they become an appropriate choice for robust image
representation, as the algorithm implicitly tries to coverthe parts of the image that are infor-
mative, and this is reflected into the excellent completeness scores according to the metric
defined in [5]. In fact, the results of our method are comparable to the best ones outlined
in the evaluation. The complementarity between context-aware features and traditional ones
is high, especially in textured scenes. Based on these results and observations, we believe
that the applicability of our method can be found in tasks such as scene classification, image
retrieval, object (class) recognition, and image compression.

Appendix Reduced KDE

Property1 tells us that applying an affine transform to a codeword does not change the result of the
extractor. We take advantage of this, and perform a principal component analysis (PCA). LetWP be the
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new codeword distribution, in whichwP(x) are its elements. In this case, the inverse of the covariance
matrix ΣWP is a diagonal matrix, where the diagonal elements contain the inverse of the variance of
every variable of the multivariate distributionWP. Therefore, we can write the Gaussian KDE in (2),
using the Mahalanobis distancedM(·, ·), as another Gaussian KDE with an Euclidean distance as

p̃(wP(y)) =
1

NΓ ∑
x∈Φ

e

(

−∑D
i=1ai(wP,i(y)−wP,i(x))2

2σ2
k

)

, (6)

whereai =
√

Σ−1
WP

(i, i). Equation (6) can be rewritten as

p̃(wP(y)) =
1

NΓ ∑
x∈Φ

D

∏
i=1

e

(

−ai(wP,i(y)−wP,i(x))2

2σ2
k

)

. (7)

Assuming that each dimensioni provides a PDF that is independent of other dimensions, we can
approximate (7):

p̃(wP(y))≃ 1
NΓ

D

∏
i=1

∑
x∈Φ

e

(

−ai(wP,i(y)−wP,i(x))2

2σ2
k

)

≃ 1
NΓ

D

∏
i=1

p̃i(wP,i(y)). (8)

The approximation is only valid if PCA is able to separate themultivariate distribution into indepen-
dent univariate distributions. While this is not always verified, the proposed approximation works
sufficiently well for convex multivariate distributions, which is the case in all the experiments de-
scribed herein. We have reduced a multivariate KDE toD univariate problems, which simplifies the
computation of distances. Furthermore, we can approximatetheD one dimensional KDEs to speed-up
the process. For the sake of compactness and clarity, in the next part of the appendix we will refer to
p̃i(wP,i(y)) asp(w(y)). We will also omit the constant 1/NΓ and the constantsai .

We can extend the concept of KDE, by giving a weightv(x) > 0 to each sample, so that the
univariate KDE can be rewritten as a reduced KDE:

pR(w(y)) = ∑
x∈ΦR

v(x)e

(

− (w(y)−w(x))2

2σ2
k

)

, (9)

whereΦR⊂ Φ. This formulation can be seen as a hybrid between a Gaussian KDE and a Gaussian
Mixture Model. The former has a large number of samples, all of them with unitary weight and fixed
σk, while the latter has a few number of Gaussian functions, each one with a specific weight and stan-
dard deviation. The goal of our speed-up method is to obtain asetΦR with |ΦR| = Nr ≪ N samples
that approximate theO(N2) KDE. The main strategy is to fuse samples that are close to each other into
a new sample that “summarises” them. Given a desired number of samplesNR, the algorithm progres-
sively fuses pairs of samples that have a minimum distance asfollows:

1: ΦR←Φ
2: v(x)← 1, ∀x ∈ Φ
3: while |ΦR|> NR do
4: {x̃0, x̃1}← arg min

x0,x1∈ΦR,x0 6=x1

|w(x0)−w(x1)|
5: v(x01)← v(x̃0)+v(x̃1)

6: w(x01)← v(x̃0)w(x̃0)+v(x̃1)w(x̃1)
v(x̃0)+v(x̃1)

7: ΦR← (ΦR\{x̃0, x̃1})∪{x01}
8: end while

The algorithm uses as input theN samples of the univariate distribution (line 1), giving constant weight
1 to the samples (line 2). While the number of points is greater thanNR (line 3 to 8), the algorithm
selects the pair of samples that show the minimum distance inthe setΦR (line 4), and a new sample
is created (lines 5 and 6), whose weightv is the sum of the pair’s weights andw is a weighted convex
linear combination of the previous samples. The two selected samples are then removed fromΦR and
replaced by the new one (line 7).
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The reduction algorithm may appear computationally expensive (∼ O(N3)), since a minimum
distance overN2

R pairs of points has to be computed (line 4). However,w can be ordered at the begin-
ning of the algorithm (with cost⌈N logN⌉), and the pairs of minimum distance can be computed inN
subtractions. Thus, for eachx, we have the respective sample at a minimum distance,xm, and their
distancedm(x) = |w(x)−w(xm)|. This data can be represented using a self-balancing tree [13], which
allows us to perform deletion and insertions (line 7) in logN time. Since the samples are ordered both
in terms ofw anddm, updating distances after deletions and insertions can be done inO(1). Therefore,
we perform 2(N−Nr) deletions andN−Nr insertions, so that the total cost of the reduction algo-
rithm is proportional to⌈N logN⌉+3(N−Nr) logN, thus beingO(N logN). The total cost to compute
pR(w(y)), linearly depends on the desiredNR and the number of dimensionsD. To further speed-up the
approximation, we can use a reduced number of dimensionsD̃ < D such that the first̃D dimensions of
the multivariate distributionWP cover 95% of the total distribution variance. This is a classical strategy
for dimensionality reduction that has provided, in our tests, an average of 3× further speed-up.
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