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Abstract

This paper proposes a novel face representation based on Local Quantized Patterns
(LQP). LQP is a generalization of local pattern features that makes use of vector quan-
tization and lookup table to let local pattern features have many more pixels and/or
quantization levels without sacrificing simplicity and computational efficiency. Our new
LQP face representation not only outperforms any other representation on challenging
face datasets but performs equally well in the intensity space and orientation space (ob-
tained by applying gradient or Gabor Filters) and hence is intrinsically robust to illumi-
nation variations. Extensive experiments on two challenging face recognition datasets
(FERET [14] and LFW [7]) show that this representation gives state-of-the-art perfor-
mance (improving the earlier state-of-the-art by around 3%) without requiring neither
a metric learning stage nor a costly labelled training dataset, having the comparison of
two faces being made by simply computing the Cosine similarity between their LQP
representations in a projected space.

1 Introduction
Face recognition is an important and popular visual recognition problem that attracts a

lot of researchers interest both due to its challenging nature and due to its diverse set of
applications. Although several recent commercial systems now use face recognition as a
fundamental component, the performance of these systems in uncontrolled environments
remains unsatisfactory and therefore motivates for further research in the field.

Advances in the visual representation have been major source of progress in the field of
face recognition. Currently, local pattern features (such as Local Binary Patterns (LBP) [1],
Local Ternary Patterns (LTP) [21], etc.) are being used quite successfully [3, 9, 12, 24,
25, 28] for face representation because of their ability to robustly encode relevant facial
traits as well as their computational simplicity. They have been successfully used in both
pixel intensity space [1, 21] and orientation space [12, 24, 28], where these patterns are
applied over gradient or Gabor filtered images. Local pattern features harness the local
information by finding a qualitative coding for each image pixel and counting the number
of occurrences of each possible code over suitable image regions – e.g. over a rectangular
grid. Although these local pattern features give good performance, they have limited spatial
support as increasing the size of local-neighbourhood increases the histogram dimensions
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exponentially. Moreover, these features use hard-wired codings/layouts and are limited to
very coarse quantization, mostly binary. These shortcomings limit the overall information
encoding capability of these local pattern features and prevent them from leveraging all the
available information, thus affect the overall performance of face recognition systems. This
paper builds on the recently introduced Local Quantized Patterns (LQP) [8], a generalized
and enriched form of the local pattern features, and shows their superiority in characterizing
faces. Our face representation is not only fast to compute (no extra computational overhead
attached at runtime), but also performs equally well in both the intensity and orientation
space and outperforms any existing face representation on different challenging datasets.

In addition to good visual representation, the performance of face recognition systems
also depends on the metric used to compare face representations. Most of the recent frame-
works learn a dataset specific metric. This results in improving the performance, mainly
because it learns the biases (like underlying regularities) of the datasets [22]. In contrast, we
show that our face representation can be used within a very simple face-matching algorithm
that does not require any pre-labelled dataset, metric-learning algorithm, or any supervised
statistical model: once features are computed we use Principal Component Analysis (PCA)
to project the features to a low-dimensional space and then perform the sphering of data
to have uncorrelated features with the same variance, and finally use angle based Cosine
similarity to match faces.

We experimentally validate our face descriptor on two different face recognition tasks: i)
Face verification (also called authentication), where it has to be decided whether the given
pair of images represents the same person or not, for this task we use the popular Labeled
Faces in the Wild (LFW) dataset [7]; ii) Face identification, where for a given query face
image a matching face (if any) is found from a set of images, for this task we use the Face
Recognition Technology (FERET) dataset [14].

Contributions. This paper introduces a complete framework for face recognition combining
(i) a well designed local pattern descriptor with (ii) a simple PCA-based similarity metric
to achieve state-of-the-art accuracy rates. In addition to being very simple and efficient,
our method has very good generalization capability and not only outperforms any existing
unsupervised method but many supervised methods on all the tested datasets.

The rest of paper is organized as follows: Sec. 2 discusses recent related work, Sec. 3
provides the details of the proposed face descriptor and explains the face matching algorithm.
Sec. 4 discusses in detail different parameter settings, datasets and provides experimental
results. Finally, Sec. 5 concludes the paper with relevant discussion.

2 Related Work
Most of the early work [2, 23] used global features implicitly extracted via subspace

methods, e.g. Eigen and Fisher faces methods [2, 23] project the whole face into a linear
subspace to capture the face variations. However, the majority of the best performing meth-
ods now use local features for characterizing the facial traits: [3] uses vector quantized local
pixels to harness the local information, [15, 16] use a battery of spatially localized Gabor
filters in multi-layer framework for face-verification task, [1, 21, 25] use histogram of local
pattern features (such as LBP, LTP etc.) extracted from intensity-images, [12, 24, 28] use
histogram of local binary pattern features extracted from orientation images (obtained via
the application of different types of orientation filters, such as Gabor ones). To have better
performance on the difficult datasets, recent methods now combine multiple local features
such as LBP, LTP, SIFT, Gabor, etc. [3, 9, 15, 21, 25, 26], where for combination methods
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Figure 1: Overview of our face recognition framework.
ranging from simple summing at the decision level to Multiple Kernel Learning (MKL) have
been adopted. Although combinations can increase the performance of the final system, it
brings extra computational overhead and requires heavy experimental validation to find the
best combination model.

Regarding the models used to represent faces, several alternatives have been used, e.g.
[2, 23] use linear projection models, [3, 6] use linear SVM, [16] linearly combine multiple
kernels via MKL, [21] uses kernel LDA. Along with statistical methods, different similarity
metrics have also been used to compare faces, those include, among others, distance-based
metrics such as Euclidean distance [16, 25] and angle-based Cosine similarity [11, 13, 21,
24]. Recent methods based on these similarity metrics also adopt metric-learning approaches
[5, 11, 26] to get further improvement. In addition to holistic methods, researchers have also
used component or parts-based methods [3, 6] to cater the higher degree of pose variability.

3 Face Recognition Framework
Our face recognition framework consists of two stages: first Local Quantized Patterns

are used to characterize the facial traits, then Cosine similarity metric is used to match faces
in the PCA projected space – c.f . Figure 1. The following subsections give relevant details
on each of these stages.

3.1 Face Representation using Local Quantized Patterns (LQP)

Limitations of Local Pattern Features. Local pattern features (such as LBP [1], LTP [21])
are based on the idea that local neighbourhoods contains a lot of discriminative information
and effective visual descriptors can be built by coarsely quantizing the appearance of local
neighbourhoods and histogramming the resulting codes. Despite their encoding efficiency
and simplicity, these local pattern features remain very local and hence somewhat myopic,
where increasing the neighbourhood size by including more pixels or increasing the circle
diameter increases the histogram size (number of codes) exponentially, e.g. increasing the
number of surrounding pixels from 8 to 16 in LBP increases the number of codes from
256 to 65,536(= 216). Even considering uniform codes (codes containing at most one 0-
1 transition [1]) over circles, increase the histogram size quadratically with the increase
in circle diameter. Furthermore, in case of large neighbourhood size it is unclear whether to
use uniform codes or not because the number of uniform codes (relative to nonuniform ones)
becomes infinitesimally small as the number of codes increases. Finally, these local patterns
use hard-wired codings and fixed layouts, which are most probably not well adapted to the
underlying dataset and/or the application domain. These shortcomings limit the encoding
capacity of local patterns and prevent them from harnessing all the information available
locally.
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Figure 2: Overview of LQP (Disk3∗
7 )

feature computation. LQP samples
pixels from a Disk layout around
a central pixel and generates a bi-
nary/ternary vector and then map
the resulting code to nearest code-
book word via a pre-built lookup/hash
table.
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Local Quantized Patterns (LQP). LQP [8] is a generalized form of local patterns that
uses large local neighbourhoods and/or deeper quantization with domain-adaptive vector
quantization to solve many of the above mentioned problems of local patterns. However, to
maintain the speed and simplicity of local pattern features and to make the process of vector
quantization fast, LQP uses the fact that local patterns binary/ternary codes – produced from
the comparisons of surrounding pixel values with the central pixel one – span a discrete space
e.g. a local pattern that involves 16 ternary pixel comparisons generates 316 = 43 million
distinct codes, and thus can be easily stored in a lookup table (LUT). LQP builds these
tables offline by mapping all the codes to the nearest cluster centers, and thus guarantees fast
vector quantization with no extra overhead at runtime. In addition to other advantages, LQP
representation also allows for fast codebook learning i.e. it counts the number of occurrences
of non-zero codes (ignoring those with zero counts) in the dataset and uses this information
directly for the fast computation of cluster-centers – e.g. doing 10 rounds of tailored K-Means
over 600×103 features of dimension 40 requires only about 28 minutes. LQP features have
already been shown to outperform other local pattern features in visual object detection and
texture classification tasks [8].

Here we use and tailor these expressive LQP features for the face representation. Pre-
cisely, we use the Disk layout (c.f . Figure 2) to sample pixels from the local neighbourhood1

and use a tolerance value (τ) to generate a pair of binary codes (as in LTP) and quantize
each one using a separately learned codebook. We will be describing the LQP geometry
by notation such as Disk3∗

3 , where the name Disk represents the type of geometry, the sub-
script indicates the neighbourhood diameter (here 3 pixels) and the superscript indicates the
quantization level (here 3* denotes split ternary coding as in LTP and 2 binary coding as in
LBP). Since our experiments show (c.f . Sec. 4) that in case of I-LQP (LQP features com-
puted over raw intensity images) using large-size neighbourhoods give better performance,
so in addition to Disks with diameters 3 and 5, we also test Disk with a diameter of 7 pixels2.
Gabor LQP (G-LQP). Gabor filters have been successfully used for face recognition
[12, 15, 21, 28] both due to their robustness to variations in the face appearance (caused
by ageing, changes in illuminations, etc.,) and their close relationship with the receptive
fields of simple cells in the mammalian visual cortex [15, 16]. They have been used as a
complementary feature set to local pattern features [21] as well as the pre-processing stage
of local pattern features [12, 28] where local pattern features are applied on the Gabor filtered
images. However, local pattern features computed over a Gabor-filtered image suffer from
the same shortcomings as when they are computed on an intensity image. In Gabor LQP
(G-LQP), as the name suggests, LQP features are computed from Gabor filtered images ob-
tained by convolving the image with multi-scale multi-orientation Gabor kernels – overall
we use 40 different Gabor kernels that span 5 different scales and 8 different orientations

1Other layouts such as HVDA, HV, etc. (see [8]) gave much worse performance in our initial face recognition experiments.
2For this extreme case scenario, we replace LUT with an efficient hashing table and use each distinct code as a hashing key.
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over the range 0 to 2π . However in contrast to all other methods [12, 28] that compute local
pattern features (due to dimensionality problem) independently over different Gabor images,
the flexibility of LQP allows it to capture the patterns co-occurrence statistics over neigh-
bouring scales and orientations by concatenating the computed codes from the neighbouring
scales and orientations at the local pattern level. This leads to significant improvement in the
performance as shown in the experiments – c.f . Sec. 4.
Implementation details. To learn visual codebook we use weighted K-Means [4] with L2
as inter-vector distance over input patterns represented as binary or ternary vectors. By
default we consider only those codes that occur more than a threshold (10 times) in the
training dataset, this helps to discard outliers. We run K-Means with ten different random
initializations and take the codebook with the least K-Means quantization error over the
training set. Once the codebook is learnt, a lookup table is built offline (where possible)
by mapping all the codes with both zeros and nonzeros counts to their closest center. To
obtain the face descriptor, we overlay the image with a grid of 10×10 pixel cells and build
cell-level histograms using bilinear interpolation to achieve robustness against small spatial
deformations. We then normalize all these cell-level histograms using L1-Sqrt normalization
i.e. each histogram is normalized to sum one and then square-rooted, and concatenate them
to form the final face descriptor.

3.2 Comparing Faces using the Cosine Similarity Metric
For comparing face images we use Cosine similarity in a reduced feature space. In the
following we provide details on the complete process.
Principal Component Analysis (PCA)-based reduction. Our LQP features are of high
dimensionality, e.g. a Disk3∗

5 descriptor with 150 words codebook computed on 80× 150
pixel image has a dimensionality of 36,000 (= 150×2×8×15). Although they outperform
the existing features on the tested datasets (c.f . Sec. 4), we still believe like other authors
[3, 12, 13, 24] that strong correlations exist between the facial features and that most of the
dimensions carry redundant information. Moreover, using high dimensional features makes
the descriptor matching process slow, and always includes the risk of over-fitting. So in order
to obtain a more discriminant, low-dimensional and uncorrelated facial representation, we
use PCA to project the features to a low-dimensional space, where the number of components
to retain is decided using a validation set.
Data Sphering. The features projected along the principal components are less correlated
(as they have a diagonal Covariance matrix) and can be considered as principal facial traits.
Nevertheless, they still have varying degrees of variance and PCA strongly favours the di-
mensions with high variance by weighting more heavily the components corresponding to
the large eigenvalues. This scenario might be more acceptable in some other applications,
but in the case of face recognition the components having high variance might not necessar-
ily contain the discriminant information, because most of the variance comes from changes
in illumination, expression, pose, etc. Instead, we believe that discriminant information is
equally distributed along all the components. So, like [3, 11, 13, 24], we perform the spher-
ing of data and divide all the principal components by square-roots of their corresponding
eigenvalues to have the projected features with the same variance. Performing this normal-
ization reduces the influence of leading principal components by down-weighting their con-
tributions3 while at the same time increases the influence of trailing components (those with

3Empirically, removing the top five components does not have any significant impact on the accuracy.
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small eigenvalues) by up-weighting their contributions, and as expected, leads to significant
improvement in the performance – c.f . Sec. 4.
Cosine similarity. Unlike conventional approaches [1, 15, 16, 27] that use a distance-based
similarity metric such as Euclidean, and as proposed by [13], by default we use angle-based
Cosine Similarity (CS) (i.e. CS(d1,d2) = (dT

1 ·d2)/(||d1|| ||d2||)) metric to compare faces in
the normalized projected space. Although we also tested other similarity metrics including
the Pearson Correlation Coefficient (PCCS) [13], Chi-squared, L2, etc., however in all our
experiments CS and PCCS turned out to be the best, both give almost identical and signif-
icantly better performance than other tested metrics. Since PCCS turns out to be relatively
slow to compute so by default we use CS. We also observed that in the case of other sim-
ilarity metrics such as Chi-squared and L2, it is necessary to perform the normalization of
projected descriptors (similar to CS) before doing the comparison to achieve good results.

4 Experiments and Discussion
4.1 Face Identification on the FERET Dataset
For the problem of face verification, we use the well known Face Recognition Technology
(FERET) dataset [14]. FERET contains images of 1,196 different individuals with up to
5 images of each individual captured under different lighting conditions, with non-neutral
expressions and over the period of three years. The complete dataset is partitioned into two
disjoint sets: gallery and probe. Gallery has labelled images and is used only for training,
while the probe images are used for testing purposes. The probe set is further subdivided
into four categories: (i) Fb images, which are similar to the ones found in gallery with some
small variations in expressions; (ii) Fc images, which are recorded with different camera and
under changing lighting conditions; (iii) Dup-I images, taken within the period of thirty-four
months; (iv) Dup-II images, taken at least one and a half year apart.
Parameters. All the images in both the gallery and the probe set are histogram equalized
and cropped to have dimensions of 90×150 pixels; no other preprocessing is done. We use
both the original and flipped versions of images. For a given test image from probe set, we
find its closest gallery neighbour and use its label information during the computation of
the mean accuracy. Chi-squared distance metric (applied on the unnormalized histograms)
is used in the case of original features and Cosine similarity for the projected features. For
all experiments, the total number of PCA components has been fixed to 900. In the case of
I-LQP, by default we use a 150 words codebook based Disk3∗

7 descriptors with a tolerance
value of zero, i.e. τ = 0. Using a relatively small neighbourhood reduces the performance,
e.g. reducing the Disk diameter from 7 to 5 reduces the mean accuracy by 2.37%, and so does
using higher tolerance values (specially for the Fc subset due to weak tolerance to varying
lighting conditions), e.g. using τ = 5 gray-level values instead of τ = 0 reduces the mean
accuracy by 0.57% (where 1.55% drop is recorded on Fc). Increasing the codebook size
to 200 does not lead to any significant improvement, whereas codebooks with more or less
number of words affect the performance adversely (similar observations were made for LFW
dataset – c.f . Figure 3). For G-LQP features we use the same parameter settings except the
neighbourhood size and obtain the final matching score by adding the responses from all
the filters at the decision-level. By default, we use Disk3∗

3 compound G-LQP features that
record co-occurrence statistics over two neighbouring scales and orientations channels, pre-
cisely for each filter compound G-LQP uses 150 words codebooks to quantize 40-D vectors
obtained from concatenating five (filter itself plus 4 neighbours) 8-bit binary patterns. Com-
pared to compound G-LQP, G-LQP (Disk3∗

5 and Disk3∗
7 ) features computed independently
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Methods Fb Fc Dup-I Dup-II Mean Comments

1 HOG [10] 90.0 74.0 54.0 46.6 66.2
2 LBP [1] 93.0 51.0 61.0 50.0 63.8
3 LGBPHS [28] 94.0 97.0 68.0 53.0 78.0 Gabor+LBP
4 LGBPWP*[12] 98.1 98.9 83.8 81.6 90.6 Gabor+LBP+WPCA
5 POEM* [24] 99.6 99.5 88.8 85.0 93.2 Gradient+LBP+WPCA+R.Filtering
6 Tan&Triggs[20] 98.0 98.0 90.0 85.0 92.8 Gabor+LBP+DoG Filtering+supervised

7 I-LQP 99.2 69.6 65.8 48.3 70.7
Computed on intensity images

8 I-LQP* 99.8 94.3 85.5 78.6 89.6
9 G-LQP 99.5 99.5 81.2 79.9 90.0

Computed on Gabor-filtered images
10 G-LQP* 99.9 100.0 93.2 91.0 96.0

Table 1: Comparative results on FERET dataset. Superscript ‘*’ is used to differentiate
methods using PCA-projected features with Cosine similarity metric from the ones using
raw features with Chi-squared distance metric.

over different Gabor-magnitude images reduce the mean accuracy by around 2%. This re-
sult emphasizes the fact that indeed recording the co-occurrence statistics among patterns is
necessary to achieve good performance.

Results. Table 1 gives the accuracy rates of our I-LQP, G-LQP and competing methods on
four different probe subsets – we use superscript ‘*’ to differentiate methods using PCA-
projected features with Cosine similarity metric from the ones using raw features with Chi-
squared distance metric. I-LQP features significantly outperform the LBP features on three
out of four subsets and improve the mean accuracy by 6.9%, where the better performance
of I-LQP features can be solely attributed to their rich-encoding ability. Using the Cosine
similarity to compare faces in the PCA-projected space also leads to significant improvement
in the accuracy, improving the mean accuracy of I-LQP and G-LQP features respectively by
18.9% and 6.0%. Overall, G-LQP features consistently give significantly better performance
than the intensity-based I-LQP, especially on the three challenging Fc and Dup-I&II subsets.
This is expected because G-LQP is at the same time more robust against variations due to
ageing (Dup-I&II) and varying lighting conditions (Fc) and contains more discriminant in-
formation. In fact, G-LQP* comes out as the clear winner among all the existing supervised
and unsupervised methods, e.g. G-LQP* gives respectively 2.8% and 3.2% better mean ac-
curacy than earlier state-of-the-art methods of Vu&Caplier (POEM*) [24] and Tan&Triggs
[20], and outperforms them in all four subsets despite not using any complex pre-processing
chain like retina or/and DoG filtering – c.f . rows 5, 6 and 10. According to the best of
our knowledge these are the best reported results (both among supervised and unsupervised
methods) to date on the FERET dataset.

From the above results we record following observations: (i) local neighbourhoods con-
tain a lot of discriminant information, and LQP features flexible structure enable them to suc-
cessfully encode this information from large local neighbourhoods; that is otherwise missed
by the other local pattern features such as LBP, LTP, etc.; (ii) using PCA reduced LQP
features with Cosine similarity helps to reduce the computational cost and leads to signifi-
cant improvements in the accuracy of the system; (iii) Gabor filters (computed on plain im-
ages without involving any complex preprocessing chain) based compound G-LQP features
remain robust to strong variations introduced by ageing and changing illumination which
helps them to achieve state-of-the-art performance on challenging subsets, and hence can be
successfully used on datasets captured under similar conditions.
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Figure 3: Accuracy of I-LQP
features on LFW View 1 dataset
computed (left) using different
combinations of cell sizes and
number of words in the codebook
and trained (right) using different
number of PCA components.
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4.2 Face Verification on LFW Dataset
For the face verification task, we use the popular Labeled Faces in the Wild (LFW) [7]
dataset. LFW contains 13,233 face images of 5,749 different individuals of different ethnic-
ity, gender, age, etc. It is an extremely challenging dataset and contains face images captured
in unconstrained environments with large variations in pose, lighting, clothing, hairstyles,
etc. LFW dataset is organized into two disjoint sets: ‘View 1’ is used for training and val-
idation (e.g. for the configuration of parameters) whereas ‘View 2’ is used for final testing
and benchmarking. In our setup, we follow the standard training and evaluation protocol as
specified in [7]. We use the aligned version of the faces as provided by Wolf et al. [25]4.

Although we do compare our results with the supervised methods, still our method is
trained using the restricted unsupervised framework, i.e. during training, our method does
not use neither the provided label information nor any outside data from any other source.
For the configuration of parameters we use only View 1 dataset. For the evaluation we use
the provided 10 random splits of View 2 dataset. We use 4 out of 9 splits for the learning of
PCA and the remaining 5 for the configuration of matching threshold (we use the one which
gives the best accuracy on validation data) and report the accuracy on the remaining 10th
split. We repeat the experiment for 10 times and report the mean accuracy.
Parameters. By default, we use the same parameter settings as used for experiments on the
FERET dataset, so here we discuss only those parameters which have been different. We
resize all the images (of both View 1&2) to 80×150 pixel dimensions. In the case of I-LQP
features, we use 150 words based Disk3∗

7 descriptors with a tolerance value equal to seven
gray-levels (τ = 7) computed using a cell size of 10× 10. Using any other combination
for cell size and number of words in the codebook gives much worse accuracy (c.f . Figure
3-left), so does using smaller tolerance values, since it makes the descriptor less resistant
against noise in the near-uniform regions [21] and JPEG artifacts. For G-LQP, we use 150
words based compound Disk3∗

3 – simple Disk3∗
5 and Disk3∗

7 give similar performance – with a
tolerance value of zero (τ = 0). For all our experiments we use PCA with 2,000 components,
using around 700 components give similar performance on View 1 (c.f . Figure 3-right) but
to have a stable system we retain much higher number of components which are still far less
than the original 36,000.
Results. Table 2 gives our results as well as competing5 unsupervised and supervised meth-
ods on LFW test set (View 2). As observed in the case of FERET dataset: (i) I-LQP and
I-LQP* features significantly outperform other local pattern (LBP and LTP) features, e.g.
I-LQP and I-LQP* respectively give 1.8%, 7.0%, 1.6% and 2.9% better accuracy than LBP,
LBP*, LTP and LTP* features; and (ii) using Cosine similarity over PCA-reduced features
gives excellent results. There is no clear winner among I-LQP and G-LQP features as both
give identical accuracy c.f . rows 9 and 7. However, when used in conjunction with Cosine

4http://www.openu.ac.il/home/hassner/data/lfwa/
5Majority of the results are reproduced from the webpage: http://vis-www.cs.umass.edu/lfw/results.html
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Methods Accuracy (%)±SE
U

nS
up

er
vi

se
d

1 SD-MATCHES [17] 64.1±0.62

2 GJD-BC-100 [17] 68.5±0.65

3 H-XS-40[17] 69.5±0.48

4 LARK [18] 72.2±0.49

5 POEM[24] 75.2±0.73

6 POEM*[24] 82.7±0.59

7 G-LQP 75.3±0.26

8 G-LQP* 82.1±0.26
9 I-LQP 75.3±0.80

10 I-LQP* 86.2±0.46

Methods Accuracy (%)±SE Comments

Su
pe

rv
is

ed

11 S.LE+holistic [3] 81.2± 0.53

12 DML-eig SIFT [26] 81.3± 0.23

13 Hybrid [19] 84.0± 0.35

14 POEM*[24] 84.9± 0.45

15 LARK [18] 85.1± 0.59

16 LBP + CSML [11] 85.3± 0.52

17 DML-eig combined [26] 85.7± 0.56

18 Combined b/g[25] 86.8± 0.34 10 features+Metric learning+SVM

19 CSML + SVM [11] 88.0± 0.37 6 features+WPCA+CSML+SVM

20 HTBIF[15] 88.4± 0.58 1000+ Gabor filters+4 distances+SVM

Table 2: Comparative results of our methods with (left) unsupervised and (right) supervised
methods on aligned LFW View 2 dataset.
similarity and PCA reduction, I-LQP* comes out as the clear winner as it gives about 4.1%
better accuracy than G-LQP* while being extremely faster to compute and evaluate. This
might be due to the reason that I-LQP works in the intensity space and captures higher level
of correlations among the pixels and thus benefits more from the PCA-reduction and data-
sphering than G-LQP which works in the orientation-space and therefore does not see the
same amount of correlations among pixels – POEM* which also works in the orientation
space, reports similar results (c.f . rows 6 and 8).

Overall, our I-LQP* features give better accuracy than any contemporary unsupervised
method and improve the earlier state-of-the-art (POEM*) by 3.5%. Note that although LQP*

and POEM* use the same underlying framework to compare faces, still our unsupervised
method gives better performance than both unsupervised and supervised (with 1.3% better
accuracy – c.f . row 6) versions of POEM*. Consequently, the better performance of our
method can be solely attributed to the better discrimination power of LQP features. Cao et
al. [3] method also resemble ours as they also use locally quantized features with PCA re-
duction in a SVM framework, but their method’s performance is also about 5% inferior (c.f .
row 11) to ours. Our single feature based unsupervised method also outperforms other super-
vised methods; precisely, it gives better accuracy rates than 7 out of the 10 supervised ones
– c.f . rows from 11 to 17. Note that the majority of the supervised methods (c.f . rows from
11 to 20) use a battery of features with complex metric learning and/or statistical models
and have extremely high computational cost e.g. High-Throughput Brain-Inspired Features
(HTBIF) based method of [15] uses 1,000+ Gabor filters in a multi-layer architecture with 4
different distance measures and SVMs to achieve good performance – c.f . row 20. In com-
parison to these methods, our method uses a single feature set with a simple similarity metric
in unsupervised settings and still gives superior performance than the majority of these su-
pervised methods at a very small computational cost. Actually, according to the best of
our knowledge, these are the best reported results (both among supervised and unsupervised
categories) by a method that uses only a single feature set – nonetheless our method’s per-
formance can still be improved by including the label information and using metric learning
with supervised statistical methods.

The main points drawn from our these experiments are mainly the same as observed in
the case of FERET dataset except that I-LQP* features perform better than G-LQP* from
which we can conclude that the choice between whether to compute local patterns in the
intensity space or in the orientation space is dataset dependent.

5 Conclusions and Discussion
This paper has presented a complete framework for face recognition including a rich vi-

sual descriptor for facial representation. We have validated the new representation through
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extensive experiments on two challenging datasets, and shown that the proposed represen-
tation outperforms any existing face representation. In fact combining this representation
with a very generic (not adapted to any dataset) face-matching framework – that neither re-
quires any labelled dataset nor any complex similarity metric-learning algorithm – leads to
state-of-the-art performance on challenging real-world datasets. Overall, our main findings
are as follows. (i) Carefully adapted expressive features are pivotal to the good performance
of the system and can convert a very simple framework to a competitive one. (ii) Although
local patterns (such as LBP or LTP) exhibit good performance, they are not fully harnessing
the information available locally and thus open the door for more expressive LQP features
which due to their flexible structure are able to exploit most of the information available
locally, and thus give the better accuracy rates. (iii) The choice between whether to compute
local patterns in the intensity space or in the orientation space is dataset dependent.
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