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Indoor scene recognition is as of today one of the most challenging open
problems in visual place categorization. Since the seminal works of Oliva
and Torralba [5] and Lazebnik et al. [3], the mainstream approach to
scene recognition has been based on global, appearance-based image rep-
resentations, enriched with spatial information. This approach, in various
forms, has given good results for the outdoor place recognition problem,
but proved to be inadequate when dealing with indoor scenes [6]. In in-
door environments, indeed, the location of meaningful regions and ob-
jects varies drastically within each category. Also, the close-up distance
between the camera and the subject makes the variations due to view-
point changes even more severe. In this scenario, it becomes crucial how
low-level features are spatially pooled to get the final image description,
especially for the robustness of the representation. In this work we in-
vestigate this issue and propose to combine a simple spatial encoding,
with a saliency-driven perceptual pooling designed to capture structural
properties of the scenes, independently from their position in the image.

Saliency-driven perceptual pooling The traditional spatial encodings
are designed to capture the spatial regularities in the scenes. We would in-
stead like to let visual-structures emerge from the data, regardless of their
exact position in the imaged scenes. Specifically, we are aiming to obtain
a segmentation (R1,R2) such that R2 captures the area of the image with a
richer informative content (i.e., a high number of visual word responses),
leaving to R1 the task to collect the statistics of the remaining part. This
is obtained by first computing a saliency map for each image, and subse-
quently using the median saliency value s̄ of the image, to segment it in
two regions: the most and least salient 50%.
To compute the saliency map, we test two approaches:

• Itti. The classic approach described in [2]

• SIFT Saliency. A novel saliency operator, directly and solely us-
ing the precomputed SIFT features to estimate the saliency map

For the latter saliency function (SIFT), we build on the work of Bruce and
Tsotsos [1]. In their proposal, the probability of each pixel is locally esti-
mated by non-parametrically fitting a distribution over the ICA projection
of the RGB values of the image. Similar to [1], after computing the ICA
projection X = [x̄1, . . . , x̄N ]

T of the SIFT description X of an image, we
estimate the probability of the j-th dimension of a descriptor i as:

p(x̄i, j) =
1
N

N

∑
k=1

K(x̄i, j− x̄k, j), (1)

where K(x) = 1√
2π)

exp
(
− 1

2 x2) is a one-dimensional standard Gaussian
kernel. The saliency of the local descriptor x̄i is then computed as:

s(x̄i) =−
D

∑
j=1

log x̄i, j (2)

and the final saliency map is obtained by computing the responses for all
the SIFT descriptors of the image, followed by a smoothing operation.

Task-driven spatial pooling Indoor scenes are designed to support hu-
man actions and humans have a limited range of spatial mobility. For
example, humans cannot easily move from the floor to the ceiling, or ac-
cess facilities if they are disposed too low, or too high in the room. This
reduces the spatial variability of indoor scenes to lie mostly on the hori-
zontal axis. Given this prior, we expect that by pooling features in hori-
zontal bands we will be able to capture the most consistent spatial patterns
in indoor scenes. We instead expect less robust results by pooling descrip-
tors in vertical bands.
To verify this intuition we thus compare the following pooling schemes:

Salient Pooling (Itti)

Salient Pooling (SIFT)

Vertical Pooling

Horizontal Pooling

Histogram # of non-zero words

Resolution 1 Resolution 1+2
30

35

40

45

50

55

A
cc

ur
ac

y 
%

Indoor Scene Recognition dataset

 

 

L0
Vertical

Saliency Itti

Saliency SIFT
Horizontal

Horizontal + Vertical

Horizontal + Saliency Itti
Horizontal + Saliency SIFT

L1

L2
L3

Figure 1: Top: Computation of a SIFT saliency map and resulting seg-
mentation. Middle: Histograms obtained with different pooling tech-
niques and number of non-zero visual words in each of the two halves of
the histograms: non-salient (NS) and salient (S), left (L) and right (R), up
(U) and down (D). Bottom: Performances of the different pooling strate-
gies on the Indoor Scene Recognition [6] dataset.

• Horizontal-bands pooling. In this settings R1 consists of the upper
50% of the image, while R2 is its complement

• Vertical-bands pooling. In this case R1 consists of the left-side
50% of the descriptors, and R2 is again its complement

We performed experiments on three widely used scene recognition datasets:
the Indoor Scene Recognition (ISR) [6], the 15-Scenes [3] and the 8-
Sports [4] datasets. A visualization of the pooling strategies, together
with the resulting histograms and a performance evaluation on the ISR
dataset are shown in Fig. 1. We see that the salient pooling strategies
perform better than the vertical one (+8.1% relative improvement). More-
over, when combined with the horizontal pooling, they always outperform
the Horizontal + Vertical and the L1 spatial pyramid baselines, being also
competitive with much higher dimensional representations, like L2 / L3.
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