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Abstract

For modern consumer cameras often approximate calibration data is available, mak-
ing applications such as 3D reconstruction or photo registration easier as compared
to the pure uncalibrated setting. In this paper we address the setting with calibrated-
uncalibrated image pairs: for one image intrinsic parameters are assumed to be known,
whereas the second view has unknown distortion and calibration parameters. This sit-
uation arises e.g. when one would like to register archive imagery to recently taken
photos. A commonly adopted strategy for determining epipolar geometry is based on
feature matching and minimal solvers inside a RANSAC framework. However, only very
few existing solutions apply to the calibrated-uncalibrated setting. We propose a simple
and numerically stable two-step scheme to first estimate radial distortion parameters and
subsequently the focal length using novel solvers. We demonstrate the performance on
synthetic and real datasets.

1 Introduction
Since fully automatic registration of photos has been shown in panoramic scenarios [4] and
later for photo collections [21], the basic techniques of first obtaining a number of tentative
correspondences and then pairwise geometric verification have become very successful for
a number of applications. The verification step removes mismatches by estimating param-
eters of a model (e.g. homography, epipolar geometry) that is assumed to be fulfilled by
all valid correspondences and so inconsistent matches can be rejected. The choice of the
right model is the crucial step in these applications, since an overly general model might
accept wrong matches, and an overly narrow model may classify good correspondences as
outliers. While the above mentioned approaches [4, 21] for automatic registration are very
successful with almost ideal pinhole cameras without much distortion, they cannot cope with
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Figure 1: Illustrative result of applying our method compared to the results of the standard
8-point algorithm; red are the inliers found by both methods; green are the extra inliers found
by our method; blue are inliers found by the standard 8-point not found by our method.

omni-directional images and wide field-of-view images with significant lens distortion. In
the literature, several camera models and techniques have been proposed to model such dis-
tortion [3, 7, 10, 13, 19, 24]. However, for automatic registration of images obtained from
internet sources or archives, an off-line camera calibration phase is not feasible. Hence,
lens distortion has to be considered directly in the multi-view geometry estimation stage,
which is typically based on some variant of RANSAC [9]. The aim is to generate a good
model hypothesis explaining the putative correspondences by stochastically searching for an
outlier-free sample set.

The probability to draw a set of n correct correspondences from a set of all potential
matches decreases exponentially with n, and authors have tried to construct so called mini-
mal solvers in order to keep the computational complexity low, e.g. [6, 10, 15, 16]. Due to the
algebraic nature of the underlying geometric problem, these solvers are typically based on
systems of polynomial equations. Variable elimination techniques such as Gröbner bases [8]
often lead to high-degree univariate polynomials, and solutions are not always stable in the
presence of noise. Sometimes derived solutions are even only solvable using exact arith-
metics on integers [17] but not when using finite-precision floating point numbers. We con-
sider the case of matching an image with unknown focal length and radial distortion, to an
image with known intrinsics. This setting has received little attention so far (see [5] for a
solution not considering the lens distortion), but is relevant e.g. when matching archive im-
agery to recent photos captured by modern digital cameras or in sequencial reconstruction.
Our approach is a numerically stable two-step method by first estimating a one-sided radial
fundamental matrix (leading to a cubic polynomial formulation) and subsequent extraction
of the focal length (via a quadratic polynomial) in order to obtain a metric reconstruction
and a good starting point for bundle adjustment. Our solution is not purely minimal and re-
laxes the original problem to achieve a much more practical method. We briefly considered a
minimal method to estimate e.g. a one-sided radial essential matrix (known camera intrinsics
but unknown one-parameter distortion model for one image), but such an approach leads to
a 26 degree polynomial (which is consistent with the up to 52 solutions for the two-sided
radial essential matrix reported in [17]). Our proposed method only requires solving a cubic
polynomial and therefore performs similarly, in terms of speed and numerical robustness, to
the standard 7-point algorithm for fundamental matrix estimation.
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2 Previous Work
Our work is related to the general multi-view geometry and self-calibration literature, for
which Hartley and Zisserman [14] is the standard reference. However, we also consider
radial distortion, which is usually only addressed by an off-line calibration step. Based on
the classical radial distortion model [3], several authors investigated in the combination of
lens distortion and epipolar geometry, e.g. [1, 10, 13, 19, 24]. Among these, Fitzgibbon [10]
has proposed a formulation that is quite easy to use in multi-view relations, upon which
Barreto et al. [1] build to propose an extended fundamental matrix. Fitzgibbon [10] also
proposes a (non-minimal) solution for estimating the fundamental matrix plus a common
radial distortion, a setting for which Kukelova et al. [16] subsequently derived the minimal
solution. While we are largely inspirated by Fitzgibbon’s formulation, this solution does not
apply to the calibrated-uncalibrated setting (with different radial distortions). Later, Byrod
et al. [6] and Kukelova et al. [18] derive a solution to estimate the fundamental matrix plus
two different, unknown distortions using 9 point matches. In principle, in our setting, one
could neglect the known distortion for one image and apply the minimal solver for the radial
fundamental matrix directly, but this comes at the expense of obtaining up to 24 solutions,
whereas our proposed method returns only up to three possible values. To the best of our
knownledge, the “one-sided” calibrated-uncalibrated setting has only been addressed in [5]
(without considering radial lens distortion). If lens distortion is known (or neglected), it is
possible to estimate a fundamental matrix and then to extract the focal length, as proposed
by Urbanek and Sturm [25]. We also propose a novel way to extract the focal length from
the obtained fundamental matrix, enabling the integration of the full method into large-scale
systems such as [22] or [11], which is our ultimate goal, namely to register historic and
present image collections. The other solution proposed in [5] for the semicalibrated case
uses the Groebner basis method to solve a system of polynomial equations, also formed with
the image matches.

3 The Proposed Two-Step Approach
In this section we derive our method to estimate the epipolar geometry between images taken
by a fully calibrated camera and an uncalibrated one exhibiting radial lens distortion with a
known distortion center. Since a direct formulation using the trace constraint on essential
matrices turns out to be impractical (due to the high degree of the resulting polynomial), we
propose a substantially simpler two step approach. The first step estimates the fundamental
matrix and the parameter of the one unknown lens distortion, and the second step extracts
the focal length useful to initialize a metric reconstruction.

3.1 One-sided Radial-Fundamental Matrix
In the following, we discuss the one-sided radial fundamental matrix describing the epipolar
geometry between an undistorted and a radially distorted image, and derive a corresponding
estimation method from given feature matches. We start with the epipolar relation,

qT F pu = 0 (1)

where q = (qx,qy,1)T is an image point from a distortion-corrected image, and pu is the
undistorted version of an observed image point pd = (xd ,yd ,1)T from an image with un-
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known radial distortion. By using the distortion model proposed in [10], we have

pu ∝

 xd
yd

1+λ r2
d ,

 (2)

where r2
d = (xd − u)2 +(yd − v)2 for a known distortion center (u,v)T , which we assume

to coincide with the image center, and λ is an unknown distortion parameter. The epipolar
constraint can be written as

qT F pu = qT F

 xd
yd

1+λ r2
d

= qT

F

xd
yd
1

+λF

 0
0
r2

d

= qT [F | λF3
]︸ ︷︷ ︸

=:F̂


xd
yd
1
r2

d

 , (3)

where we introduced the 3× 4-matrix F̂ . F3 denotes the 3rd column of F . The task is now
to determine the matrix F̂ from a number of correspondences. F̂ can be estimated linearly
from 11 correspondences as the respective null vector of the stacked epipolar constraints.
This solution ignores intrinsic constraints of F̂ , which are det(F̂ [1 : 3,1 : 3]) = det(F) = 0
(the fundamental matrix is rank deficient) and F̂4 ∝ F̂3 (the last column is a multiple of the
third one). Consequently, only 8 correspondences are necessary for a minimal solution (11
unknown minus 3 constraints). Given 8 (non-degenerate) correspondences, F̂ has to reside
in a 4-dimensional nullspace and can be written as

F̂ = xX̂ + yŶ + zẐ +wŴ , (4)

where X̂ , . . . ,Ŵ corresponds to the basis of the nullspace. The freedom of scale can be
fixed by setting w = 1, leaving 3 unknowns to be determined, x, y and z. Expanding the
determinant constraint and the F̂4 ∝ F̂3 constraints leads to a polynomial system of equations
in x, y and z. Using Macaulay 2 one can verify that up to 8 real solutions for F̂ are obtained.
By using a ninth correspondence, F̂ can be estimated in a much simpler way: we drop the
determinant constraint (as also done in the 8-point algorithm [12] to determine the standard
fundamental matrix). By using 9 correspondences, the nullspace F̂ is an element of is only
three-dimensional, i.e.

F̂ = xX̂ + yŶ + zẐ. (5)

We can again fix z to 1 due to the scale ambiguity of F̂ . The constraints F̂4 ∝ F̂3, i.e. λ F̂4 = F̂3,
now read as

xX̂i4 + yŶi4 + Ẑi4 = λ
(
xX̂i3 + yŶi3 + Ẑi3

)
(6)

for i = 1,2,3. This polynomial system of equations is simple enough to perform symbolic
elimination using the resultant method. Elimination of x and y (e.g. by using Maxima’s
eliminate function) yields a quartic polynomial in λ , which is unfortunately not minimal
in its degree. Hence, we slightly alter the elimination method: first, we can eliminate λ by
taking ratios (which corresponds to elimination of λ using the resultant method), leading to
3 polynomial equations in x and y only,

pi j(x,y)
def
=
(
xX̂i4 + yŶi4 + Ẑi4

)(
xX̂ j3 + yŶj3 + Ẑ j3

)
−
(
xX̂ j4 + yŶj4 + Ẑ j4

)(
xX̂i3 + yŶi3 + Ẑi3

) !
= 0 (7)
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for (i, j) ∈ {(1,2),(1,3),(2,3)}. Application of the resultant method again to eliminate e.g.
y returns a 4th order polynomial in x, which is not optimal. Hence we compute two resul-
tants (e.g. combining p12 with p13, and p12 with p23, respectively) leading to two degree 4
polynomials in x,

q1(x)
def
= a1x4 +b1x3 + c1x2 +d1x+ e1

!
= 0

q2(x)
def
= a2x4 +b2x3 + c2x2 +d2x+ e2

!
= 0.

The coefficients1 are large, but still manageable expressions of the nullspace matrices X̂ , Ŷ
and Ẑ. The leading monomial x4 can now be eliminated by one step of Gaussian elimination
leading to a final cubic polynomial,

r(x) def
= a2q1(x)−a1q2(x)

!
= 0. (8)

This can be solved in closed form leading to one or three real solutions. For each possible
value of x, a corresponding y can be extracted by a similar procedure. Two of the pi j polyno-
mials (which are quadratic) yield a linear equation in y after one Gaussian elimination step.
The extended fundamental matrix is given by F̂ = xX̂ +yŶ + Ẑ, and λ can be obtained as the
ratio λ = F̂14/F̂13 = F̂24/F̂23 = F̂34/F̂33. By construction all those ratios are equal.

Since we dropped the rank constraint, the estimated fundamental matrix (i.e. the 3× 3
submatrix F̂ [1 : 3,1 : 3]) will generally be of full rank. We enforce rank-2 using the SVD as
in the 8-point algorithm.

Normalization: Similarly to the 8-point algorithm [12] we normalize the image mea-
surements. For the calibrated image we use the inverse of the camera intrinsics for the
normalization, and for the uncalibrated one we use an initial estimate of the focal length,
fguess =

W/2
tan( f ovguess/2) where W is the image width and fovguess = 50◦ is an a-priori estimate

of the focal length. Further, the image points are centered to have the principal point in the
origin.

3.2 Extracting the Focal Length from the Fundamental Matrix in a
Partially Calibrated Setup

The method detailed in the previous section allows to compensate for the lens distortion in
an uncalibrated image (at least to a large extent). Nevertheless, for metric reconstructions
and bundle adjustment the knowledge of camera intrinsics, i.e. mostly the focal length, is
desirable. This section describes how the focal length can be extracted in partially calibrated
settings and proposes a different approach than [23, 25].

Let F be a fundamental matrix, and K and K′ camera intrinsics such that E = (K′)T FK is
an essential matrix. K is assumed to be known and K′ is of the shape diag( f , f ,1) for an un-
known focal length f , hence we can incorporate K into F , yielding E = diag( f , f ,1)F . Plug-
ging this expression into the trace constraint for essential matrices, 2EET E− tr(EET )E = 0
(see e.g. [20]), leads to a corresponding matrix constraint in terms of f ,

G( f ) def
= 2diag( f , f ,1)FFT diag( f 2, f 2,1)F

− tr
(
diag( f , f ,1)FFT diag( f , f ,1)

)
diag( f , f ,1)F !

= 0. (9)

1Matlab code is available at http://www.cvg.ethz.ch/research/distortion-in-multiple-view-geometry/
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(a) (b)

(c) (d)
Figure 2: Error measurements for random camera poses with distortion parameter λ of 5 ·
10−7 and different noise levels: (a) relative error of focal length; (b) relative error of lambda;
(c) angular error for the translation vector between the cameras; (d) error for the rotation
angle between the cameras

We determine f by minimizing the algebraic error, ‖G( f )‖2
F . First order optimality condi-

tions, d‖G( f )‖2
F/d f = 0, yields a polynomial in f 5, f 3 and f . Since we can exclude the

degenerate solution f = 0, a double quadratic polynomial in f 4 and f 2 can be obtained,
which is trivial to solve after substituting w = f 2. Since f has to be strictly positive, up to
two possible values for f need to be checked for optimality.

4 Experiments

In this section we evaluate the numerical stability and behaviour of the proposed algorithms.
To test the algorithms, we first analyse their behaviour with synthetic data and then with
real images. In the experiments with synthetic data we use random camera configurations,
different noise levels, different distortion parameters. Due to the lack of earlier methods for
our setting, the results are compared to those obtained with the method from Kukelova et
al. [18], although this latter method estimates distortion for both cameras whereas, in our
setting, one of the images in each image pair has known intrinsics and no distortion. We
then test the algorithms with real world images, for which we have ground truth information
for focal length and distortion. Results are also compared with those obtained with the stan-
dard method of computing the fundamental matrix with the 8-point algorithm (disregarding
distortion).
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(a) (b)

(c) (d)
Figure 3: Error comparison with the method from Kukelova et al. [18] for random camera
poses with distortion parameter λ of 5 ·10−7 and different noise levels: (a) relative error of
focal length; (b) relative error of lambda; (c) angular error for the translation vector between
the cameras; (d) error for the rotation angle between the cameras

4.1 Evaluation with synthetic data

The first set of tests for the semicalibrated case was performed using synthetic data. All tests
with synthetic data were performed with a set of random 3D points and 1000 generated ran-
dom camera poses. The first camera was placed at the origin, with fixed parameters, pointed
towards the set of 3D points. The 1000 random poses were generated for the second cam-
era, by generating random translations, random rotations and random focal lengths, varying
between 1/2 and 2x the focal length of the first camera. For each camera pose we projected
the 3D points on both cameras, distorted the points on the second camera according to the
division distortion model[10] using values for λ ranging from strong distortion ( 5 · 10−7

on 1024x1024 image) to almost no distortion (5 · 10−9 and also 0), and added noise with
different values of standard deviation σ . For each of the poses we computed the error in the
estimation of λ , focal length of the second camera, the angular error for the translation vector
and the error for the rotation between the two cameras. Same as with the 8 point algorithm,
we can also use more than 9 correspondences in our formulation to obtain the null space in
eq.5. and so we vary also the number of point correspondences used. All computations of
the fundamental matrix were performed using point correspondences with normalised coor-
dinates according to section 3.1. Results are presented in Fig. 2, where we can see that as the
number of used correspondences rises the error values decrease. We also found that chang-
ing the value of the ground truth lambda does not have a perceivable impact on the estimate
errors for the focal length, translation error and rotation, while for the estimation of lambda,
the smaller ground truth lambda gets, the harder it is to estimate it, and so the estimate error

Citation
Citation
{Kukelova, Byr{ö}d, Josephson, Pajdla, and Astr{ö}m} 2010

Citation
Citation
{Fitzgibbon} 2001



8 BRITO ET AL.: ONE-SIDED RADIAL FUNDAMENTAL MATRIX ESTIMATION

(a) (b)
Figure 4: Error of estimates of the focal length from the fundamental matrix with our method
and the method from Urbanek et al.: (a) random configurations; (b) turntable motion

grows. We don’t include those results for different values of λ because of lack of space.
We then compared the performance of our method to that from Kukelova et al. [18], so

for each pose we computed the errors using a minimal set of 9 points, while on one hand
using our method, and on the other hand computing the fundamental matrix with the method
from [18]. The focal length is extracted in both cases using the algorithm in section 3.2.
Results are presented in Fig. 3 for ground truth λ equal to 5 ·10−7. We can see that if we use
a set of 9 points as one would use in RANSAC, our method is able to better handle increasing
noise levels. It should also be noted that applying the method from Kukelova et al. to our
setting should lead to estimates of λ1 for the first image close to zero. However, this is not
the case. In many tests, especially with noise, the estimate of λ1 is very different from zero,
which could indicate that the method is not stable for distortion values close to zero (i.e. when
no distortion is present). Of course, in a practical situation, one would sample subsets of 9
correspondences in a RANSAC framework, and also perform optimization on the solution
computed with the inliers. However, in these experiments we were trying to measure the
sensitivity to noise of both algorithms for a random minimal set of correspondences.

To validate the second part of our method, which is the extraction of the focal length
from the fundamental matrix, we compared the performance of our method to that of the
method proposed by Urbanek at el. in [25]. To do this we conducted a separate test in which
we generated 1000 random configurations, projected a set of 3D points in the images and
added different levels of noise, but without adding distortion. Then we estimated the focal
length from the fundamental matrix (computed with the standard 8-point algorithm) with
both methods and compared them to the ground truth focal length. In randomly generated
configurations the results do not significantly differ, but in specific settings, like turntable
motion, our method produces more accurate estimates of the focal length. For this setting
results are presented in Fig. 4.

4.2 Tests on real images

To test the method on real images we first matched a set of uncalibrated/distorted images to
an image with known calibration parameters using different datasets. In Fig. 5 (a) and (b)
we show some images of two of the datasets we used. From the evaluation of the previous
section we conclude that our method produces more accurate results for a minimal solution
from nine points and therefore we consider it to be more suitable to be used in a RANSAC
framework. Our algorithm has a complexity comparable to that of the standard 7-point
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(a) (b)

(c) (d)

(e) (f)
Figure 5: Some images from two of the datasets of real images used in the tests: (a) Great
St. Mary Church; (b) Trinity College. (c) and (d) ratio of number of inliers vs. number of
putative matches; (e) and (f) epipolar error of inliers

algorithm for classical fundamental matrix, since the main steps are finding the null space
created by the nine correspondences (rather than the seven correspondences in the 7-point
algorithm) and solving a quadratic polynomial. We will now compare whether the solution
presented is effective in a RANSAC scheme and really helps as compared to not considering
lens distortion. For this, we evaluate whether an overall practical system using our 9 point
solver in a RANSAC scheme improves the number of retrieved matches and how the average
error behaves as compared to a standard 8-point-method for classical fundamental.

To extract features in the images we used SURF[2], and then we computed a number of
putative matches in each image pair by standard feature space matching. This produced a
number of matches for each image pair, not all of which were correct correspondences. We
then ran the two methods in a RANSAC framework with same parameters and sample sets.
In the end we computed the ratio of inliers and the average epipolar error of the inliers. To
obtain the epipolar error (used for classifying outliers) we computed the distance in pixels
between a point and the epipolar line in the undistorted image. Results for two of the tested
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datasets are shown in Fig. 5 (c-f) where we can see that our method tends to use a higher
number of inliers and that these inliers have an equal or lower average epipolar error. In
Fig. 1 we can see two typical situations were the standard 8-point method would use only
the correspondences where the points are at the center of the image and therefore not heavily
affected by radial distortion, whereas our method would be able to use more correspondences
also at the edge of the image, where radial distortion is more severe.

5 Conclusion
We have presented a numerically stable and efficient solution to the calibrated-uncalibrated
image registration problem with unknown focal length and radial distortion. The solution
significantly improves the number of inliers in presence of distortion. Compared to more
general solvers that consider radial distortion but that cannot make strong assumptions about
the first camera, we could reduce the degree of the problem from 24 to 3, which means that
we can obtain the solution in closed form without having to worry about numerical problems.
At the same time complexity is reduced and we do not have to evaluate 24 different hypothe-
sis generated from the 9 correspondences. Finally, we extract the focal length and the relative
motion from the fundamental matrix, allowing for a metric reconstruction and integration of
the uncalibrated, distorted image e.g. into previously calibrated, photo collections.
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