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For modern consumer cameras, often approximate calibration data is avail-
able, making applications such as 3D reconstruction or photo registration
easier as compared to the pure uncalibrated setting. In this paper we ad-
dress the setting with calibrated-uncalibrated image pairs: for one image
intrinsic parameters are assumed to be known, whereas the second view
has unknown distortion and calibration. This situation arises e.g. when
one would like to register archive imagery to recent photos. Very few ex-
isting solutions apply to the calibrated-uncalibrated setting. We propose a
simple and numerically stable two-step scheme to first estimate radial dis-
tortion parameters and subsequently the focal length using novel solvers.

By using the distortion model proposed in [1], pu ∝
(
xdyd1+λ r2

d
)T

is the undistorted version of an observed image point pd = (xd ,yd ,1)T in
an image with unknown radial distortion, r2

d = (xd−u)2 +(yd−v)2 for a
known distortion center (u,v)T , assumed to be at the image center, and λ

is an unknown distortion parameter. The epipolar constraint becomes
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where we introduced the 3×4-matrix F̂ . F3 denotes the 3rd column of F .
By using 9 correspondences, the nullspace of F̂ is three-dimensional, i.e.

F̂ = xX̂ + yŶ + zẐ. (2)

We can fix z to 1 due to the scale ambiguity of F̂ . The constraints F̂4 ∝ F̂3,
i.e. λ F̂4 = F̂3, now read as

xX̂i4 + yŶi4 + Ẑi4 = λ
(
xX̂i3 + yŶi3 + Ẑi3

)
(3)

for i = 1,2,3. First, we can eliminate λ by taking ratios, leading to 3
polynomial equations in x and y only,

pi j(x,y)
def
=
(
xX̂i4 + yŶi4 + Ẑi4

)(
xX̂ j3 + yŶ j3 + Ẑ j3

)
−
(
xX̂ j4 + yŶ j4 + Ẑ j4

)(
xX̂i3 + yŶi3 + Ẑi3

) !
= 0 (4)

for (i, j) ∈ {(1,2),(1,3),(2,3)}. We then compute two resultants (e.g.
combining p12 with p13, and p12 with p23, respectively) leading to two
degree 4 polynomials in x,

q1(x)
def
= a1x4 +b1x3 + c1x2 +d1x+ e1

!
= 0 (5)

q2(x)
def
= a2x4 +b2x3 + c2x2 +d2x+ e2

!
= 0 (6)

The leading monomial x4 can now be eliminated by one step of Gaussian
elimination leading to a final cubic polynomial,

r(x) def
= a2q1(x)−a1q2(x)

!
= 0. (7)

This can be solved in closed form leading to one or three real solutions.
For each possible value of x, a corresponding y can be extracted by a sim-
ilar procedure. Two of the pi j polynomials (which are quadratic) yield
a linear equation in y after one Gaussian elimination step. The extended
fundamental matrix is given by F̂ = xX̂ + yŶ + Ẑ, and λ can be obtained
as the ratio λ = F̂14/F̂13 = F̂24/F̂23 = F̂34/F̂33. By construction all those

Figure 1: Illustrative result of applying our method compared to the re-
sults of the standard 8-point algorithm; red are the inliers found by both
methods; green are the extra inliers found by our method; blue are inliers
found by the standard 8-point not found by our method.

ratios are equal. Since we dropped the rank constraint, the estimated fun-
damental matrix (i.e. the 3×3 submatrix F̂ [1 : 3,1 : 3]) will generally be
of full rank. We enforce rank-2 using the SVD as in the 8-point algorithm.

The focal length can be extracted in partially calibrated settings and
we propose a different approach than [2]. Let F be a fundamental matrix,
and K and K′ camera intrinsics such that E = (K′)T FK is an essential
matrix. K is assumed to be known and K′ is of the shape diag( f , f ,1)
for an unknown focal length f , hence we can incorporate K into F , yield-
ing E = diag( f , f ,1)F . Plugging this expression into the trace constraint
for essential matrices, 2EET E− tr(EET )E = 0, leads to a corresponding
matrix constraint in terms of f ,

G( f ) def
= 2diag( f , f ,1)FFT diag( f 2, f 2,1)F

− tr
(

diag( f , f ,1)FFT diag( f , f ,1)
)

diag( f , f ,1)F !
= 0. (8)

We determine f by minimizing the algebraic error, ‖G( f )‖2
F . First or-

der optimality conditions, d‖G( f )‖2
F/d f = 0, yields a polynomial in f 5,

f 3 and f . Since we can exclude the degenerate solution f = 0, a dou-
ble quadratic polynomial in f 4 and f 2 can be obtained, which is trivial
to solve after substituting w = f 2. Since f has to be strictly positive,
up to two possible values for f need to be checked for optimality. Our
algorithm has a complexity comparable to that of the standard 8-point al-
gorithm for classical fundamental matrix, since the main step is finding
the null space created by the nine correspondences (rather than the eight
correspondences in the 8-point algorithm).

To test our the method on real images, we matched a set of uncali-
brated/distorted images to an image with known intrinsics using different
datasets. We ran our and the standard 8-point methods in a RANSAC
framework.. Results show that our method uses a higher number of in-
liers with an equal or lower average epipolar error. In Fig. 1 we can see
two typical situations were the standard 8-point method would use only
the correspondences not heavily affected by radial distortion, whereas our
method would use correspondences where radial distortion is severe.
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