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One of the attractive properties of RANSAC [2], at least with the top-
hat (inlier 1, outlier 0) cost function, is that it returns an optimal solution
with a predefined, user-controllable probability. The theoretical guarantee
is based on the assumption that all all-inlier (minimal) samples lead to the
optimal solution. It has been observed [1, 9] that the assumption is not
valid in practice and that often a significant data-dependent fraction of
all-inlier samples does not lead to an acceptable solution.

To address the “not all all-inlier samples are good” problem, Chum et
al. [1] introduced the LO-RANSAC which applies a local optimization (LO)
step to promising hypotheses generated from random minimal samples.
Experiments in [1] show that LO-RANSAC is superior to plain RANSAC

in terms of accuracy and its probability of obtaining a correct solution is
close to the theoretical value derived from the stopping criterion. The LO-
RANSAC method is popular, highly cited and has been used in a number
of applications.

Chum et al. [1] stated that the improvements of the accuracy and the
probability of obtaining a correct solution may even speed the algorithm
up since the increased number of found inliers triggers the stopping crite-
rion earlier. The LO is run only rarely, the number of runs being close to
the logarithm of the number of samples.

As the first contribution of the paper we show that the “no extra time”
statement is true only for estimation problems with low inlier ratios. For
image pairs a high fraction on inliers where a small number of random
samples is sufficient for finding the solution, the original LO procedure
significantly effects the running time, sometimes becoming a dominating
factor that may increase the running time by an order of magnitude. To
alleviate the problem and reduce the overhead we modify the iterative
least squares by introducing a limit on the number of inliers used for the
least squares computation. Nevertheless, the modified LO+-RANSAC is
slower than plain RANSAC, fortunately mainly for easy datasets where
the procedure is very fast anyway (see Figure 1 for an illustration of the
dependence). Essentially the result shows that the local optimization is
not always a free lunch and that there is a trade-off between estimation
quality (accuracy and repeatability) and the computational time.
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Figure 1: Dependence of the time complexity on the inlier ratio for a
selected pair of images.

As a second contribution, we introduce a fast version – LO’ that has
execution time close to the standard RANSAC and perform close to LO-
RANSAC in almost all cases. Instead of estimating models from non-
minimal samples followed by iterative least squares, only a single iterative
least squares are applied on each so-far-the-best model.

The LO procedure is relatively complex, with a high number of pa-
rameters. As a third contribution of the paper, we are making public an
ultimate description of the method: a C/C++ implementation of the im-
proved LO+. The implementation has been extensively experimentally

tested and performed well on dozens of geometry estimation problems
with the same parameter settings. The proposed method is very stable
- for many tested geometric problems it returned the identical set of in-
liers in 10000 out of 10000 test runs. We also show that the proposed
algorithm is insensitive to the choice of the error scale which defines the
inlier-outlier separation. In this context we confirm the slight advantage
of the MSAC-like truncated quadratic [10] over the the top-hat, 0-1 loss
function. The precision of the LO procedure for both methods is almost
identical, but the MSAC-like kernel increases tolerance to the choice of the
inlier threshold. Therefore, the proposed LO+ differs from the standard LO

by using the inlier limit and the truncated quadratic cost function.
The accuracy of the proposed LO method is tested within a standard

Bundle adjustment method [5]. Perhaps surprisingly the bundler is rather
sensitive to initialization. The LO initialized non-linear optimization is
always superior in terms of residual errors to the Gold Standard method
advocated by Hartley and Zissermann [3].

In our experiments, tentative correspondences were obtained by ma-
tching SIFT descriptors [6] of MSER’s [7]. In the supplementary material
[4], also experiments using Hessian Affine detector [8] are presented. The
results on Hessian Affine features are even more favourable for the LO

methods because of lower inlier ratios. Basically, they show our conclu-
sions are independent of the selection of detectors.

The experimental evaluation shows that: (1) the LO+-RANSAC with
MSAC cost function offers a stable robust estimation despite its random-
ized nature, (2) limiting the number of inliers included in the (iterative)
least squares significantly reduces execution time and often even improves
the precision, (3) the speed of the minimalistic version LO’ is comparable
to plain RANSAC even for easy problems with very high inlier ratios, and
that (4) LO-RANSAC offers significantly better starting point for bundle
adjustment than the Gold Standard [3].
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