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Abstract

Visual codewords assignment plays an important role in many Bag of Features (BoF)
models for image understanding and visual recognition. It allocates image descriptors
to the most similar codewords in the pre-configured visual dictionary to generate de-
scriptive histogram for the consequent categorization. Nevertheless, existing assignment
approaches, e.g. nearest neighbors strategy and Gaussian similarity, suffer from two prob-
lems:1) too strong Euclidean assumption and 2) neglecting the label information of the
local features. Accordingly, in this paper, we propose an assignment method to simulta-
neously consider the above two issues in a unified model via graph learning and informa-
tion theoretic criterions. For learning, the proposed model can be efficiently solved in a
closed-form with the reasonable graph topology invariant approximation. Moreover, the
learned projections enable us to extend the assignment ability to the out-of-sample visual
features beyond the initial training graph. Experiments on our own manifold dataset and
two benchmarks verify the effectiveness of the proposed graph assignment method.

1 Introduction
In computer vision, a long standing but still challenging problem is how to accurately cate-
gorize different images based on their intrinsic contents. Most of the existing frameworks to
solve this problem involve two steps [3] [4]: 1) image representation and 2) image classifi-
cation. The second step is a well defined machine learning task and can be effectively solved
by some strong classification machines, e.g. SVM. Therefore, the prominent task in image
categorization is subject to how to effectively generate visual vectors1 to represent differ-
ent images. For image representation, prevalent algorithms include topic models, e.g. Latent
Dirichlet Allocation (LDA) [10][2], Codeword similarity assignment [13][15][18] and sparse
coding [19]. In this paper, we mainly focus on the codeword similarity based methods for
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1We call the generated information as visual vectors to distinguish it from local image features.
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image categorization because it usually achieves higher accuracy than the topic models and
greatly releases the heavy computational burdens of sparse coding methods.

Codeword similarity methods construct a histogram to describe the original image by as-
signing each local image feature to a codeword in the dictionary, a.k.a. codebook. Codebook
generation is the first step of our framework which produces the representative codewords by
clustering the training local image features into different clustering centers. The second step
is codeword assignment which allocates different image features to the selected codewords
according to some strategy and similarity. For codeword assignment, albeit many variations
have been proposed around the years, hard assignment [15] and soft assignment with Kernels
[18] are two of the most influential works. Although hard and soft methods show promising
results on a number of practical applications, we argue that these two methods suffer two
problems that deserves consolidated investigations.

For typical assignment, the first problem is that they are all implemented in the Eu-
clidean space while neglecting the intrinsic distribution of massive image features. It is
widely known that it is not possible to lose sight of the nonlinearity of data distribution when
a large amount of data are available[7] [1] [8]. However, in the Euclidean space, all the fea-
ture similarity are judged by the linear metric which is not sufficient to reveal the nonlinear
structure of data. Accordingly, inspired by many previous works on manifold learning, in
this paper, we propose to use a graph to model the distribution of data. On the feature graph,
different nonlinear similarity, e.g. geodesic distance and commute time of random walk, can
be used as a nature metric to evaluate the feature similarity during assignment.

Besides, typical codeword assignment methods only consider the feature similarity while
neglecting the label information contained in each local feature. Since the images are from
different categories, the local image features also have their own label information of the im-
age category. However, this critical property is usually neglected for both codebook selection
and codeword assignment. Accordingly, inspired by the previous works on information the-
oretical clustering [14], we consider using the mutual information to reveal such a mutual
relationship between local image features and their corresponding image labels.

Accordingly, we design the Graph Assignment with minimal Mutual Information Loss
(GAMIL) model to address the aforementioned properties for codeword assignment. In a
nutshell, our algorithm considers finding orthogonal projections to preserve the original non-
linearity of the training image features in an embedding space with minimal mutual infor-
mation loss. Then, all the in-sample and out-of-sample local image features can be assigned
to the codewords in the embedding space. In order to effectively solve the GAMIL model,
we use the Epanechnickov Kernel [9] to estimate the probability density function (pdf) of
the feature distribution in the embedding space. With such a kernel, the GAMIL can be well
solved in a closed-form which greatly reduce the computational complexity of optimization.

In order to verify the performance of the proposed method, we compare our GAMIL with
other state-of-the-art assignment methods on three datasets. We publish our own Multi-view
human body dataset, a laboratory synthetic dataset, to investigate the advantages of GAMIL
to handle data under manifold distributions. The improvements of GAMIL are also validated
on two benchmarks of Scene-15 [10] and Caltech-101 [11].
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2 Graph assignment with minimal mutual information
loss

In this part, we will introduce the proposed GAMIL model. We define the local image
features set as S = {( f1, l1),( f2, l2)...( fn, ln)}, where fi ∈ Rp is the image feature, e.g. dense
sift, extracted on the original image and li ∈ {1,2, ...C} is the category label of the image
that fi is extracted from. C is the number of image categories. The quantity of samples in
the training set S is quite huge since these image features are densely sampled from a many
images. For example, for the Scene-15 dataset, the quantity of training features is more than
320,000. With the increasing of data quantity, the manifold structure of data will come out.

2.1 Describing feature similarity via graph

(a) ground truth (b) assignment via ED. (c) assignment via GD. (d) assignment via CT.

Figure 1: A toy assignment via different methods, i.e. Euclidean Distance(ED), Geodesic
Distance(GD) and Commute Time(CT).

Therefore, in this paper, we propose to use a graph to model the samples in S. Using the
manifold structure, it is possible to model the linearity among data by the locality similarity;
and the global nonlinearity can be evaluated by some graph metric on the manifold. For
graph construction, we use the KNN method that one node fi is connected with its nearest k
neighbors. Two widely known graph metric to evaluate the nonlinear relationships between
data for assignment are geodesic distance [12] and commute time [17]. Geodesic distance
refers to the shortest distance between two nodes on the graph and commute time records the
steps of a random walk to travel around a pair of nodes. An intuitive toy example that shows
the advantages of graph assignment is provided in Fig.1. In the figure, the yellow markers
represent the codewords and the features are assigned to the codeword with the nearest dis-
tance strategy by different metrics. Obviously, the manifold assignment methods by geodesic
distance and commute time generally outperform the result assigned by Euclidean distance.

But the above-motioned method on a graph is only suitable to the in-sample features.
For practical usage of codeword assignment, it is desirable to extend the assignment ability
to the out-of-sample data. One trivial solution to solve this problem is to construct such a
manifold for any testing image and then to calculate the graph metric from the feature nodes
to the codeword. However, the computational cost is extremely huge for real time usage.
Fortunately, inspired by [8], we propose to embed the graph into an Euclidean space with a
linear projection matrix. In the embedded space, the original graph metric is well preserved
by the Euclidean distance. According to [8], we give the graph metric guided transformation,

min
Ω

tr(ΩT F(D−W )FT Ω) s.t. ΩT FDFT Ω = I (1)
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where F = [ f1, ..., fn] ∈ Rp×n is the feature matrix; Ω ∈ Rp×q,q < p is the linear projec-
tion matrix. W = [wi j] is the weight matrix obtained on the graph which records the similarity
between any two nodes i, j on the graph and D = diag(∑i Wi j). tr(·) represents the trace of
a matrix. Eq.1 projects all the training samples into the subspace with a linear projection
and the clustering centers in the embedding space are selected as codewords. For an out-of-
sample feature, we first project it to the subspace and then assign it to each codeword via
Euclidean similarity. It is because the Euclidean distance in the embedding space represents
the original nonlinear graph similarity on the manifold.

2.2 Minimal mutual information loss criterion
In the previous section, we propose to use a graph structure to reveal the similarity among
the training features. But it worths noting that each feature in the set S also contains the label
information. During training, we know where the image feature comes from. Therefore, it
will be better if we can also take the label information into the assignment process. Accord-
ingly, the problem changes to be how to evaluate the relationship between the features F and
their labels L. Fortunately, owing to the previous work [14], we know that the relationship
of feature and label is always judged by the mutual information, i.e. I(F ;L). In probabil-
ity theory and information theory, the mutual information [6] of two random variables is a
quantity that measures the mutual dependence of the two random variables. It measures how
much knowing one of these variables reduces uncertainty about the other. Informally, in our
case, I(F ;L) can be interpreted as how much the uncertainty is reduced about the label L if
we know the feature F . Therefore, for discriminative learning, a large mutual information
score is desired.

The proposed graph assignment method projects the high dimensional feature in a low
dimensional space (q < p). Ideally we hope that the mutual information on the original
graph should be kept the same in the embedding space, i.e. I(F ;L) = I(ΩT F,L). Unfortu-
nately, reducing the dimensionality of data from high to low of course causes information
loss. Therefore, instead of mutual information preservation, we propose to use the minimal
mutual information loss criterion, i.e. to minimize I(F ;L)− I(ΩT F ;L). I(F ;L) is a fixed
value because the original F and L are both known. Therefore, the optimization changes to
minimizing −I(Y = ΩT F ;L). So, the remaining problem is how to calculate the mutual in-
formation in the embedding space. Starting from the basic definitions in information theory,
we know I(Y ;L) =H(L)−H(L|Y ), where H(·) means the entropy. The probability of labels,
i.e. P(L) is usually assumed to be uniform distribution or it can be estimated from training
samples. No matter which prior for the label information is used, the entropy H(L) is a fixed
value and can thus be dropped from the optimization. Therefore, by considering both the
information loss and graph similarity, the optimization for our GAMIL model is given,

min
Ω

tr(ΩT F(D−W )FT Ω)︸ ︷︷ ︸
graph assignment

+αH(L|Y = ΩT F)︸ ︷︷ ︸
mutual information loss

s.t.ΩT FDFT Ω = I, (2)

where α is a user specified parameter which trades off the graph assignment and mutual
information loss.

We will stop here to make some remarks on the second term in (2). Although H(L|Y )
is obtained from minimal information loss criterion, we can also give the physical explana-
tions to it directly. H(L|Y = ΩT F) is the entropy for the labels conditioned on knowing the
features in the embedding space. In the ideal case that the entropy is optimally minimized,
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the uncertainty of L by giving Y reduced to the minimum. The minimal entropy implies the
maximal determination of labels by seeing the features. However, in (2), the entropy can not
be arbitrarily minimized. We can only find the best Ω that seeks the balance between the
entropy minimization and graph similarity preservation.

2.3 Model learning
The GAMIL model in (2) is not easily to be learned since we do not know the true probability
distribution for the labels in the embedding space. One way to make it tractable is to estimate
the entropy and probability in a discrete form from the training data. Therefore, we get,

H(L|Y ) = ∑
y∈Y

p(y)H(L|Y = y) =− ∑
f∈F

p(ΩT f ) ∑
l∈L

p(l|y = ΩT f ) log p(l|y = ΩT f ) (3)

To explicitly get the entropy, we should estimate probability density function (pdf) of
p(ΩT f ) and p(l|Y = ΩT f ). We calculate p(ΩT f ) using the kernel density estimation that

p(ΩT fi) =
1
N ∑

j ̸=i

1
σ

K(
ΩT fi −ΩT f j

σ
) (4)

, where K(·) is the selected kernel density and σ is the parameter. There are many the kernel
density functions, e.g. the widely used Gaussian window. However, in this paper, we prefer
to use the Epanechnickov Kernel [9] because it may help us simplify the final optimization.
The Epanechnickov Kernel Kε(x) = 3

4 (1− x2) ∀|x|< 1 and 0 otherwise. The probability

p(l|yi = ΩT fi) =
1

∥Nσ (yi)∥ ∑
y j∈Nσ (yi)

δ (l j = l) (5)

, where δ (·) is the Kronecker delta function and Nσ (·) represents the σ −ball nearest neigh-
bors. By taking Kε(·) and p(l|yi) into (3) and with some simple algebra, we get that,

3
4∑

yi

∑
y j∈Nσ (yi)

σ2H(L|yi)−
3
4∑

yi

∑
y j∈Nσ (yi)

H(L|yi)
∥∥yi − y j

∥∥2

=
3
4∑

yi

∑
y j∈Nσ (yi)

σ2H(L|yi)−
3
4∑

i j

Hi j
∥∥yi − y j

∥∥2
(6)

In (6), Hi j =H(l|yi) if yi ∈Nσ (y j) and zero otherwise. Up to now, we have shown how to
estimate H(L|Y ) from the training data. However, the optimization is still intractable by such
an estimation. This is because the estimation of H(L|yi) involves a nonlinear functionality
of finding the nearest neighbors in the embedding space. Ways to solve such an intractable
optimization may use some methods like Gibbs sampling which is computational heavily.
Therefore, in this paper, we introduce an approximation strategy to make GAMIl model
solved efficiently.

In our approach, we note that the first term in (2) is a graph preservation term, which
preserves the topology of the original graph into the embedding subspace. Accordingly, we
assume that after the graph projection, the neighboring topology on the original graph is
kept the same in the embedding space. Of course, this assumption does not strictly hold for
all the nodes. But we believe, such topology invariant rule is applied to most of the nodes
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in the embedding space. This graph topology preservation property is guaranteed by the
first embedding term in GAMIL. Based on such an assumption, we can use the conditional
entropy H(l| fi) on the original graph to replace the entropy H(l|yi) in the embedding space.
When taking such an approximation into (6), the first term becomes a constant and Hi j in the
second term is fixed. Therefore, the GAMIL model subject to the optimization ,

min
Ω

tr(ΩT F(D−W )FT Ω)−αtr(ΩT F(DH −H)FT Ω) s.t. ΩT FDFT Ω = I, (7)

where DH = diag(∑i(Hi j)). Eq.7 is a standard convex function with quadratic objective.
If we define LW = D−W and LH = DH −H, we can write the Lagrangian multiplier of 7 in
the form of,

L(Ω,Λ) = tr(ΩT F(LW −αLH)FT Ω)+< Λ, I −ΩT FDFT Ω >, (8)

where < A,B >= tr(ABT ) = tr(AT B) is the inner product and Λ is the Lagrangian multiplier
which is a diagonal matrix. By setting ∂L

∂Ω = 0, we get,

F(LW −αLH)FT Ω = FDFT ΩΛ. (9)

Therefore, the optimal solution to Ω is subject to such a general eigenvalue decomposition.
Since the objective in GAMIL is to be minimized, so the eigen-vectors corresponding to the
smallest eigenvalues are used in the projection matrix. After getting the optimal projection
matrix Ωopt , we can assign any image features to the codewords in the embedding space.

3 Experiments

3.1 Experimental setup
The experimental setup of this work substantially follows Lazebnik et al. [15]. We randomly
pick a number of images per class for training, and the left are for testing. In order to get
reliable results, each experiment is repeated for 10 times (otherwise notice).

To describe an image, we use a grid-based method to extract the dense sift features. The
dense SIIF features [16] are extracted on a 16× 16 pixel patches sampled every 8 pixels.
For our GAMIL method, the codebook is generated in the embedding space by K-means
algorithm.

For classification, we use the SVM with a histogram intersection kernel. The libSVM
toolbox [5] is adopted to make a one-versus-one approach for multi-class classification. A
10-fold cross-validation procedure is implemented on the training set to find an optimal
parameter for SVM.

3.2 Multiview human body categorization
Before starting the evaluations on benchmark dataset, we would like first to publish our own
dataset on Multiview Human Bodies (MHB). We have setup a multi-camera 3D studio to
capture multi-view images for human actors. Compared with natural image datasets, our
dataset could better highlight the manifold property among data. This multi-view dataset
consists of images from 20 cameras which are evenly placed on a ring. Our dataset contains
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Figure 2: The images in the Multiview human body dataset.

8 actors/actress. In Fig. 2, we show one boy and one girl as demos. For categorization, a
rectangle which contains the whole human body is extracted from each image.

In this dataset, we will verify why manifold properties can be emphasized by the pro-
posed GAMIL model. On the manifold, we test two widely used graph metric, i.e. geodesic
distance [12] (GD) and commute time [17] (CT). We do not use other manifold similarity
e.g. locality Euclidean distance or locality linearity, since these similarity cannot reveal the
relationship between unconnected nodes. First, we will only use graph assignment method
while drop the information theoretic term. In a nutshell, we set α = 0 in (2) only to verify
the manifold assignment ability. We compare it with the hard and soft assignment methods
in Euclidean space. For this dataset, 5 images for each person are used to train the GAMIL
model and the rest 15 images are for test. The dimensionality of projection matrix ΩT is fixed
as 128×50, and size of the vocabulary is 200. Training and testing procedures are randomly
repeated for 50 times and the average results are reported in the first row in Table.1.

Table 1: Image categorization results on the MHB dataset

CT GD Hard Soft

α = 0 88.3 89.2 85.8 86.1
α = 1 89.2 90.8 - -

Then, we consider taking the mutual information loss term into the optimization and set
α = 1.0 in the GAMIL model. The corresponding results are provided in the second row of
the table.

From the results, our GAMIL model outperforms the results of hard and soft assignment
methods that use Euclidean similarity. By incorporating the manifold metric into the assign-
ment, we get more than 3% improvements than both the hard and soft method. This point
can be verified from the first row in Table.1. Moreover, the classification can be further im-
proved by considering the mutual information loss term into the optimization. The highest
classification rate (90.8%) was obtained by GAMIL model with the geodesic distance.

For the two graph metric, it is concluded that geodesic distance slightly outperforms the
commute time. But, one significant advantage of commute time is due to its computational
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efficiency. According to [17], the calculation of commute time is fast which only requires
to solve a general inverse problem. But the computational costs of the geodesic distance re-
quired are quite heavy. Therefore, to trade off the effectiveness and efficiency, we choose the
commute time as the graph metric in the following experiments on the benchmark datasets.

3.3 Results on benchmarks
In this part, we test our algorithm on two benchmark datasets. We report our GAMIL al-
gorithm on Scene-15 [10] and Caltech-101[11] databases. In Scene-15 dataset, we use 100
images per category as training samples and the rests are for test. For Caltech-101 dataset,
15 images in each category are used for training and the rests are for test. To learn the
GAMIL model, we also fix the projection dimension of Ω as 128×50. Both the codeword
selection and assignments are implemented in the embedding space. For these two datasets,
the experiments are repeated for 10 times and the average classification results are recorded.
To improve the classification accuracy, following the suggestions in [15], we use a 2-level
pyramid. For each pyramid level, the codewords number are fixed as 200. The nonlinear
metric used in the GAMIL model is the commute time.

For comparison purpose, our GAMIL model will be compared with assignment algo-
rithms with the same experimental setup. Besides, we will also compare our method with
other image categorization methods that do not follow the way of codeword assignment. We
will compare GAMIL with sparse coding method [19] and info-loss clustering [14]. The
categorization accuracies are reported in Table.2.

Table 2: The comparisons of GAMIL model with other state-of-the-arts on two benchmarks

Algorithms Scene-15 Caltech-101

Hard 76.3 56.4
Soft 78.2 59.5

GAMIL 80.7 64.3
Info-loss[14] 74.7 -

Sparse coding[19] 80.3 67.0

In the table, the first three rows report the results of three codeword assignment algo-
rithms. These three results are obtained with the same experimental setup that we use the
same codewords and the same parameters to conduct the experiments. Our reproducing re-
sults on hard and soft results is also similar to the reported result in [19]. From these three
assignment results, our GAMIL achieves the best performance on both the two benchmarks.

We also compare the GAMIL with info-loss clustering method [14]. In [14], Lazebnik
et al. proposed a general co-clustering method based on mutual information loss strategy.
The co-clustering algorithm is applied to codewords generation for image categorization.
Although both their works and ours use the mutual information loss criterion, the goals are
definitely different. [14] focus on clustering while we want to make assignment. From
the comparison on scene-15 dataset, our GAMIL outperforms the result reported in [14].
But the main contribution of [14] is not specific for scene categorization. It is a machine
learning paper and scene categorization is just an application. However, we still pit them as
a comparison here since both of us use mutual information loss criterion.

Finally, we compare GAMIL model with the sparse coding methods. In the Scene-15
dataset, our GAMIL slightly outperforms the results of sparse coding. In the large Caltech-
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101 dataset, the sparse coding method achieves the highest accuracy. Nevertheless, we will
argue that the time costs of GAMIL and sparse coding are not in a same order of magnitude.
To assign each feature to the codewords, GAMIL just needs to calculate inner products which
can be finished in almost real time. However, sparse coding requires to solve ℓ1 minimization
for each feature on the image. Therefore, sparse coding is far more computational heavy than
GAMIL. GAMIL can produce comparable good result is less time.

4 Conclusions and future works
This paper presents a codeword assignment method to generate visual vectors for image cat-
egorization. We contribute on mainly two points: 1) we use a graph structure to model the
massive image features and 2) the proposed algorithm takes the label information of the im-
age features during assignment. To the best of our knowledge, this is the first time to assign
codewords via a manifold way and it is also the first time to consider discriminative informa-
tion into assignment. Owing to these two critical criterions, our algorithm outperforms most
other assignment methods on both the MHB dataset and two benchmarks.

However, there are also some points that deserve future justifications. First, for the mu-
tual information estimation, we use the non-differentiable Epanechnickov kernel to estimate
the probability density of the feature distribution. Such a kernel and its corresponding ap-
proximations enable us to directly obtain the closed-form solution to the GAMIL optimiza-
tion. However, this solution is only an approximation to the original problem. In our future
work, we will consider using a continuous kernel, e.g. Gaussian kernels to model the feature
probability and try to solve the optimization exactly via alternating methods. Besides, the
experiments discussed in this paper are almost on natural images. We will generalize the ef-
fectiveness of the proposed method to more complicated image categorization applications,
e.g. on medical images and the SAR images.
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