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Abstract

Current approaches to large-scale visual reconstruction would benefit from a statisti-
cal model of multiple-view projection. In particular, global constraints based on scene-
clutter and occlusion are required. This work presents a new statistical model, starting
from the simplest example of a random scene, viewed by two cameras. It has previ-
ously been shown that, if the scene is modelled as a Poisson process of identical objects,
then the distance to a visible object follows an exponential distribution. But this is not
qualitatively realistic, because the mode of the exponential is at zero, implying that the
optical centre is fully amid the clutter. Real range-data, in contrast, follows a two-tailed
distribution along each ray. A more realistic visibility density is proposed, in which the
optical centre is displaced from the Poisson scene by a Gaussian shift. This means that
the distance to an un-occluded object is now distributed according to the convolution of
the exponential and Gaussian distributions, which has a variable mode. This distribu-
tion is re-parameterized along the corresponding epipolar line in another view, via the
appropriate Jacobian. The resulting correspondence density gives the prior probability
of a binocular match. The parameters of the density are estimated from a data-set of out-
door laser range-scans. This makes it possible to generate full 3D Poisson models that
are statistically consistent with the real data. These synthetic scenes are used to further
investigate the correspondence density, by Monte Carlo simulation.

1 Introduction
Multiple-view correspondence problems are hard because of inconsistencies and ambiguities
between the images. Some parts of the scene may appear very different from one view to
another, and yet many scenes may be compatible with the given images. These observations
motivate the Bayesian approach to such problems [3, 9, 11]. In particular, if the scene
is assumed to be piecewise-smooth, then dense correspondence can often be estimated by
global optimization routines [1, 5]. These methods work well, given calibrated cameras and
a limited class of scenes (e.g. ‘carpentered’ interiors).

Strong local priors, such as piecewise surface-smoothness, are less appropriate for in-
tricate [16] or large-scale [22] visual reconstruction tasks. Typical scenes are cluttered at
the scale of buildings and trees, which suggests a role for weak, but global priors. In par-
ticular, it would be useful to have probabilistic models of visibility and occlusion. Similar
questions have previously been addressed in relation to volumetric scene representations
[2, 13, 18, 19]. These models emphasize the weak but global constraints that are placed on
the scene by photometric relations, across large numbers of images. It is argued here that
there is a complementary role for statistical models of multiple-view geometry. In particular,
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Figure 1: Range data. An example image from the Brown data-set [12]. Lighter surfaces are
further away. Data for the experiments was taken from the the central 120◦×40◦ rectangle
of these images.

a correspondence density is introduced, which assigns a prior probability to the projection
of a point in one image, given its location in another. The approach is based on the statistics
of natural scenes [4, 20], in the same way that 2-D restoration methods can be based on the
statistics of natural images [9, 10, 21].

The statistical properties of 3-D scenes are difficult to study, for two reasons. Firstly,
there is a huge variety of visual environments, and so it seems that any practical model must
be quite generic. Secondly, global models are difficult to test, because most of the available
data is extremely biased, although this may not be immediately apparent. For example, re-
constructions that have been acquired from a sparse set of viewpoints tend to be unions of
façades, orthogonal to each optical axis, rather than fair representations of the internally-
structured scene volume. This applies to laser and time-of-flight data, as well as to conven-
tional multi-view reconstructions. The most obvious manifestation of the bias is that new
viewpoints will usually reveal gaps, or gross interpolations, in any optical reconstruction.

The first problem is addressed here by basing the scene model on a homogeneous Pois-
son process [8], which is as generic as possible. The second problem is avoided, by testing
on simulated scenes that are statistically consistent with a real data set, given the Poisson
model. Specifically, the parameters of a visibility density are estimated from a collection
of laser range-scans. No viewpoint-bias is introduced, because no actual 3-D structure is
retained. The estimated parameters, however, are sufficient to generate any number of syn-
thetic scenes, according to the Poisson model. These synthetic scenes have the property that,
if the visibility parameters were re-estimated from them, the same values would be obtained
as from the laser scans. Millions of these random scenes have been generated, and used to
evaluate the correspondence density.

The present work is closely related to that of Langer [14], in which the exponential occlu-
sion model (cf. [12, 17]) was developed. This is the basis of the new visibility density that is
introduced in section 2. The empirical evaluation of the density is based on laser range-scan
data that was recorded and analyzed (differently) by Huang, Lee & Mumford [12, 15]. The
new binocular correspondence density is interestingly related to the monocular SLAM model
of Civera, Davison & Montiel [7]. There the authors propose an inverse-depth parameteri-
zation, based on a Gaussian model of parallax in the images (as opposed to distance in the
scene). The relevance of this will be considered in section 4.3.
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1.1 Overview and contributions

Section 2 develops the monocular case, based on the existing exponential model (2.1). The
placement of the cameras with respect to the scene is then considered (2.2), leading to the
new visibility density (2.3). Section 3 develops the binocular case, including the geom-
etry (3.1) and parameterization (3.2), leading to the new correspondence density (3.3).
Section 4 reports the experiments, including fits to laser range-scan data (4.1), as well as
simulations (4.2). The new model is then evaluated (4.3), followed by a general discussion
in section 5. The chief contributions of the paper are the ex-Gaussian scene model (2.3), the
binocular Jacobian (3.2) and the scene analysis and synthesis procedures in (4.1) and (4.2)
respectively.

1.2 Preliminaries

Some recurring assumptions and notation will be established here. Firstly, it will be assumed
that the scene S consists of many identical objects. Suppose that the numbers of objects
found in disjoint regions of the scene are statistically independent; it follows that the objects
are distributed in space according to a Poisson process [8]. This work is concerned with
the binocular case and so it will be convenient to work in an arbitrary epipolar plane, E ,
that passes through both optical centres. This captures all of the essential geometry, and the
resulting model can easily be extended to the full 3-D space. The scene-elements, in this
plane, are discs.

The cameras, which are assumed to be calibrated, will be modelled simply as bundles
of rays through their optical centres. In other words, wide-angle spherical projection is
assumed, which is also appropriate for laser ranging devices. The relative orientation of
the cameras will not be modelled, in order to simplify the presentation. However, in the
spherical-imaging model, the mapping from the bundle of rays to the oriented image-surface
is just an overall angular shift (vs. a homography for planar imaging). It will be assumed that
a point in the left (L) view is observed, and that the location of the corresponding point in
the right (R) image is sought. The model is of course symmetric with respect to these labels,
and indeed a mixture of L→ R and R→ L processes may be considered simultaneously.

The exponential and Gaussian probability distributions will be used repeatedly, so let
them be expressed as F(x,λ ) = λ exp(−λx) and G(x,µ,σ) = (2πσ2)−

1
2 exp

(
− 1

2σ2 (x−µ)2
)

respectively. Note that the usual condition F(x,λ ) = 0 for negative x has not been imposed
here, as this will allow a cleaner development below (though in practice, the argument will
always be a length or volume, and therefore non-negative).

2 Monocular model

This section develops a new model of the visibility density along a line of sight, which
defines the probability that an observed object lies at a given distance from the optical cen-
tre. Two underlying processes will be identified in sections 2.1 and 2.2, and combined in
section 2.3.

2.1 Occlusion process

It is assumed, as described in sec. 1.2, that objects in the epipolar plane E are distributed
according to a homogeneous Poisson process [8]. This means that the probability pr

(
k|R

)
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Figure 2: Viewing geometry. Monocular case, left: The scene S comprises discs of radius
ε , with near-boundary ∂0S. The depth z0 of the latter is normally distributed around µ . A ray
in direction θ extends to distance t through empty space, followed by distance s through the
scene, before striking an object. Equivalently, there are no disc-centres in the 2ε × s green
rectangle, and so s is exponentially distributed. Binocular case, right: both rectangles must
be empty for the disc to be binocularly visible. Note that equal increments of θR would span
increasingly long segments of ρL = s+ t as the difference-angle δ decreases.

of k objects being located in a regionR⊂ E of area |R| is given by the Poisson density

pr
(
k|R

)
= exp

(
−λ |R|

) (λ |R|)k

k!
(1)

where λ is the intensity of the process (number of objects per unit area). Now, following
Langer [14] and Huang et al. [12], suppose that the objects are discs of radius ε . In order for
a disc at distance s, in direction θ to be visible, no other disc-centre can be within a perpen-
dicular distance ε of the corresponding ray-segment. Geometrically, the 2ε× s rectangle R
must be empty, as shown in fig. 2 (left). Algebraically, k = 0, and it follows from (1) that

pr(s|λ ,ε) = F
(
s, 2ελ

)
(2)

which is an exponential density (as defined in sec. 1.2), after incorporating the normalization
with respect to distance,

∫
∞

0 pr(s|λ ,ε)ds = 1.

2.2 Offset process
The chief limitation of (2) as a visibility model is that the mode of the distribution is always
at the optical centre. This is not characteristic of empirical scene distributions, as seen in
fig. 3, because the camera (or head) is not placed randomly amid the scene clutter. Rather, the
optical centre tends to be placed in relatively empty space, and pointed at the cluttered region.
Suppose that the near-boundary ∂0S of the clutter is a fronto-parallel plane, lying at a random
distance z0 in the straight-ahead direction θ = 0. A ray of azimuth θ intersects the near-plane
at a distance t = z0/cosθ . Now suppose that z0 follows a Gaussian distribution G(z0,µ,σ),
where µ is the mean ‘viewing distance’. It follows, by exact uncertainty propagation, that

pr(t |θ ,µ,σ) = G
(

t,
µ

cosθ
,

σ

cosθ

)
(3)
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is the distribution of the distance t to ∂0S , along a ray of azimuth θ . The parameter σ

accounts for variations in the overall viewing-distance, irregularity of the scene-boundary,
and for additive Gaussian measurement errors.

2.3 Visibility density
Recall from sec. 2.1 that a ray in direction θ extends to distance s through the scene S.
However, given the offset model (3), the scene begins at distance t along the ray. The total
range is the sum of the two distances

ρ = s+ t (4)

which must be distributed according to the convolution of the individual densities. It is con-
venient to first define H = F ?G from the original exponential F and Gaussian G densities:

H(ρ,λ ,µ,σ) =
∫

ρ

−∞

F(ρ− τ,λ ) G(τ,µ,σ) dτ (5)

= F
(
ρ−µ− 1

2 λσ
2, λ

) ∫ ρ

−∞

G(τ−µ−λσ
2, 0, σ) dτ (6)

where, in practice, the value of the remaining integral is easily obtained from the standard
normal CDF, evaluated at (ρ − µ)/σ −λσ . The density H(ρ,λ ,µ,σ) is the ex-Gaussian,
which is commonly used to model human reaction-times [6]. It can be seen from (6) that
H is the product of a falling exponential and a rising sigmoid, so it has a left-skewed shape.
The mean and variance of H are µ + 1/λ and σ2 + 1/λ 2, respectively. Another appealing
property of this density is that additive Gaussian measurement error ∆ρ is absorbed so that
the density of ρ + ∆ρ remains ex-Gaussian. It is straightforward to define the full range-
density, by combining the parameterizations of (2) and (3), to give

pr(ρ |θ ,λ ,µ,σ) = H
(

ρ, 2ελ ,
µ

cosθ
,

σ

cosθ

)
. (7)

This then, is the probability that a line-of-sight extends to distance ρ , in direction θ . The
near-boundary of the scene is, on average, at distance µ in direction θ = 0. Each unit-region
of the scene contains, on average, λ discs of radius ε .

3 Binocular model
In order for a point p to be binocularly visible, the ρL× ε and ρR× ε rectangles around the
rays in directions θL and θR must both be empty [14], as in fig. 2. It follows that the binocular
visibility density is a product of ex-Gaussians (7),

pr(ρL,ρR) = pr(ρL|θL)×pr(ρR|θR) (8)

with everything implicitly conditioned on the scene-parameters ε , λ , µ and σ . Note that this
joint probability is defined over the epipolar-plane E , where (ρL,ρR) is just another pair of
coordinates for p. It would, of course, be much more interesting to consider the distributions
that arise in the images, rather than the scene. In particular, the conditional distributions
pr(θR |θL) and pr(θL |θR) are most important. For example, the distribution pr(θR |θL) gives
the probability of seeing a point in direction θR from cR, given that it was seen in direction
θL in cL. These densities will be defined in sec. 3.3, but it is first necessary to develop the
underlying geometry and resulting change of variables.
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Figure 3: Range densities. Left: maximum likelihood ex-Gaussian fit to the upper ‘canopy’
regions of 14 range-scans. Middle: fit to the central 120◦×40◦ regions (cf. fig. 1), which is
most representative of heterogeneous clutter. Right: fit to the lower ‘ground’ regions. The
blue dot is the mean of each data-set.

3.1 Viewing geometry

The left and right optical centres, cL and cR, are separated by an interocular distance β .
The baseline of the system is perpendicular to the two zero-azimuth planes, as in fig. 2. As
described in sec. 1.2, the binocular geometry will be analyzed in the epipolar plane E that is
spanned by cL, cR and a given scene-point p. These three points form a triangle, with angle
δ = θR−θL at p. The viewing distances ρL and ρR can be obtained from the angles θL and
θR via the sine rule,

ρL =
β cosθR

sinδ
and ρR =

β cosθL

sinδ
where δ = θR−θL. (9)

Note that the angle 0≤ δ ≤ π is non-negative for any point in front of the baseline, and non-
zero for any finite point. Furthermore, it follows from the triangle inequality that ρL +ρR≥ β ,
and that for finite points |ρR−ρL| ≤ β .

3.2 Change of variables

Suppose that prX (x) and prY (y) are the densities of a random variable x, before and after a
transformation y = f (x). Now recall that if f is smooth and invertible, then the two densities
are related by the conservation of probability prY (y) |dy| = prX (x) |dx|. It follows that the
transformed density is properly defined as prY (y) = prX

(
f−1(y)

)
|d f−1/dy|. The transformed

variable y and inverse-transformation f−1 are, in the present context, θR and the vector-
valued function

(
ρL(θR),ρR(θR)

)
respectively. The latter will be abbreviated to

(
ρL,ρR

)
,

with the two components defined by (9). The conserved probability is then

pr(θR |θL)×|dθR|= pr(ρL,ρR)×|d(ρL,ρR)|. (10)

This is more complicated than the scalar case, because the inverse function maps θR to a pair
of numbers (ρL,ρR), such that a curve is traced out in the 2-D parameter-space. The quantity
|d(ρL,ρR)/dθR| is the length of the tangent vector to the curve, at the point defined by θR.
This can also be interpreted as the ‘1-D volume’ of the 2×1 Jacobian matrix d(ρL,ρR)/dθR,
if the volume of a rank-r matrix is defined as the product Πr

i σi of nonzero singular-values
(as r = 1 and σ1 = |d(ρL,ρR)/dθR| in the present case). The actual Jacobian term can be
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obtained by differentiating (9) with respect to θR, and evaluating the norm:

JR(θ) =
√

(dρL/dθR)
2 +(dρR/dθR)

2

= ρR

√
csc2 δ + cot2 δ , where δ = θ −θL.

(11)

The explicit form of (11) is obtained by noting that the derivatives of (9) can be expressed as
dρL

/
dθR = −ρR/sinδ and dρR

/
dθR = −ρR/ tanδ . It is worthwhile, remembering that the

direction θL is fixed, to consider the form of the curve (ρL,ρR) in the parameter space. In
particular, it is asymptotic to a 45◦ line, which can be seen with reference to the derivatives,
by evaluating the local slope dρR

dθR

/ dρL
dθR

= cosδ , as θR becomes equal to θL and so δ → 0.
Conversely, at the point dρR

/
dθR ∝ cotδ , the directions θL and θR are perpendicular, δ =

π/2, and ρR is minimized. Equation (11), as noted above, gives the length of the tangent-
vector to this curve. The factor

√
csc2 δ + cot2 δ is U-shaped over the range 0 ≤ δ ≤ π ,

equal to one at δ = π/2, and accelerates very rapidly at either end. This has significant
consequences for the shape of the final density, as described below.

3.3 Correspondence density
The complete conditional density can now be constructed from (10) and (11). The probabil-
ity of seeing a point in direction θR from cR, given that it was observed in direction θL from
cL is

pr(θR |θL) = pr(ρL,ρR)× JR(θR)
/

SR(θL) (12)

where JR(θR) is the Jacobian function (11), and SR(θL) is the normalizing constant. The
latter is defined by integrating from the epipole to the vanishing point,

SR(θL) =
∫

θL

− π
2

pr(ρL,ρR) JR(θR) dθR (13)

so that
∫ θL
−π/2 pr(θR |θL)dθR = 1. It may seem that the integral (13) could be zero (and 12

undefined) if a point in direction θL is occluded from cR in a particular scene. However, over
the ensemble of scenes the integral must be positive, as certainly each point is sometimes
binocularly visible. The constant SL(θR) for pr(θL |θR) is similarly defined, but with the
integration running from θR to π/2.

It is important to note that the density (12) is well-defined at infinity, which corresponds
to the vanishing-point pr(θR → θL |θL). This limit is always equal to zero, even though
JR(θR)→ ∞, because of the exponential decay pr(ρL,ρR)→ 0 in the tail of the ex-Gaussian
product. This ensures that the normalizing constant (13) can easily be obtained by numerical
integration.

4 Experiments
Three stages of experiment are reported. In sec. 4.1 the parameters of the monocular model
from sec. 2.3 are estimated for real data. In sec 4.2 these parameters are used to synthesize
a full 3-D scene that is consistent with the data. Finally, in 4.3, the binocular model from
sec. 3.3 is tested on the synthetic scenes. The data consists of 14 wide-angle range images,
showing woodland scenes, chosen from the Brown set [12]. These were acquired by a Riegl
LMS-Z210 laser scanner, with angular resolution of 0.18◦, and a range resolution of 0.8cm.

Citation
Citation
{Huang, Lee, and Mumford} 2000



8 HANSARD: BINOCULAR PROJECTION OF A RANDOM SCENE

4.1 Scene analysis
Maximum-likelihood estimates of the parameters λ , µ and σ , in the model pr(ρ |θ ,λ ,µ,σ)
from (7) will now be computed. Firstly, the two additional parameters θ and ε , that appear
on the right-hand side of (7), must be considered. The azimuth θi is known for each pixel,
and so the range-data ρi is first transformed to depth-data ρi cosθi, thereby eliminating az-
imuth from the model. In effect, all data is projected onto the straight-ahead direction. The
disc-radius ε appears as 2ελ in (7), and is therefore not observable; instead, the product
Λ = 2ελ is estimated. This results in a one-parameter family of fitted models, varying from
coarse/sparse to fine/dense.

The negative log-likelihood of the model was numerically minimized over the parameters
(Λ,µ,σ), using an initizalization based on the empirical mean (which would be the ML
estimate of 1/Λ if µ and σ were zero). The resulting fit is shown on the left of fig. 3. It can
be seen that the shape of the empirical distribution is well-represented by the ex-Gaussian
model. In particular, the local asymmetry at the mode is present the fit.

4.2 Scene synthesis
The level curves of pr(ρL, ρR) can be approximated by confocal ellipses, around the two
optical centres, because the density depends essentially on the sum ρL + ρR. It follows that
the natural far-boundary ∂1S of the scene is a semi-ellipse in the epipolar plane E . But
typical scenes are large in relation to the baseline separation β and so, for practical purposes,
the foci coincide and the far-boundary is a semi-circle. The near-boundary ∂0S is a plane,
as detailed in 2.2, which intersects E in a line. The area of the remaining D-shaped region
is |S| = z1

2 (φ − sinφ) where φ is the field-of-view, and cos(φ/2) = µ/z1. Hence |S| is
determined by µ , which has been estimated, and z1 which can either be imposed, or set to
the maximum range of the laser-scanner. In fact it makes little difference for dense scenes,
in which the boundary ∂1S is rarely seen.

If N discs are generated, then the intensity of the simulated data will be λ ′ = N/|S|. This
should match λ in the estimate Λ = 2ελ , and so N = Λ

2ε
|S| after rounding the right-hand

side to the nearest integer. Note that ε remains a free parameter, as previously discussed.
The points themselves are generated by rejection-sampling over the bounding rectangle of
the scene. Let x be uniformly distributed on [−z1,z1], and let z be uniformly distributed on
[z0,z1] where z0 is itself normally distributed with the previously estimated parameters µ and
σ . Each point (x,z) is accepted if x2 + z2 < z2

1, until N have been added to the scene. This
scheme is quite efficient, because the D-shaped region fills most of its bounding rectangle.

4.3 Evaluation
It is now possible to evaluate the binocular model from sec. 3, using the 3-D scenes that were
synthesized in sec. 4.2. This is not a trivial exercise, because the model involves several
simplifications, and it is not immediately clear that these are reasonable. In particular, ac-
cording to (8), the probability of binocular visibility is a function of two disjoint rectangles,
ρL× 2ελ and ρR× 2ελ . This is a slight underestimate of the probability, because the two
rectangles actually overlap as they meet, by an amount that depends on δ . Likewise, it is not
immediately clear that the scene-boundary has been suitably defined in 4.2.

The parameters Λ, µ and σ , estimated from the range data, were used to simulate random
scenes as described in sec. 4.2. The object radius ε was set to 10cm, which is plausible for
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Figure 4: Correspondence densities. Histograms show the angular distributions pr(θR|θL)
obtained by Monte Carlo simulation. The red lines are the predicted (not fitted) distributions
defined by (12). The angular sectors extend from the epipole (−90◦) to θL, which is the
vanishing-point (blue dot) of the ray through cL, as seen from cR. The extent of each distri-
bution is coloured green. Top row: at low densities, the Jacobian dominates because even
very distant points (δ ≈ 0) may be seen. Middle row: these distributions are matched to the
statistics of the laser-range data in the central panel of fig. 3. Bottom row: at high densities,
the occlusion process dominates, and the mode is shifted back from the vanishing-point.

foliage mixed with larger surfaces. The baseline separation β was set to 50cm, which would
be realistic for an outdoor stereo system. It is interesting, given these settings, to study the
effect of varying θL around zero, and of varying λ around the estimated density Λ

2ε
. The

results of these Monte Carlo simulation are shown in fig. 4, where each graph represents
106 binocular projections. The red lines are the distributions that are directly predicted (not
fitted) by (12).

Firstly, it is clear that the broad location of the distribution is correct in all cases (note
that the horizontal axis varies according to the plot). Secondly, the shapes of the distributions
are complicated, and vary according to the density Λ. At low densities more distant parts of
the scene are binocularly visible, and the mass moves towards each vanishing point. At high
densities occlusions occur just inside ∂0S, and more symmetric distributions are obtained.
The shapes of the distributions also vary according to the azimuth θL. All of these variations
are well captured by the model. The least accurate predictions are for the left-hand column
of fig. 4. This is attributable to the overlap effect discussed above; when θL� 0, the left and
right rays are near-parallel over the whole range of θR, and so there is substantial overlap
between the two surrounding rectangles. It is interesting to note that, except at very low
densities, the correspondence distributions (fig. 4) are ‘more Gaussian’ than the visibility
densities (fig. 3). This supports the assumptions made by Civera et al. in their inverse-depth
parameterization [7].
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5 Discussion
An ex-Gaussian model of the monocular visibility density has been introduced. It has been
shown that this is a good fit for outdoor data from a laser range-scanner. The Jacobian of the
projection from the supporting ray to the corresponding epipolar line has been derived. The
binocular correspondence density, which assigns a probability to the projection of a point
in one image, given its location in the other, has been constructed from these components.
Random scenes, that are statistically consistent with the range-data, were synthesized and
used to validate the model. Future work will consider more sophisticated scene models,
including spatially inhomogeneous processes. The correspondence density, as discussed in
the introduction, can be interpreted as a global prior for binocular matching. The practicality
of this application will be investigated.
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