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Current approaches to large-scale visual reconstruction would benefit from
a statistical model of multiple-view projection. In particular, global con-
straints based on scene-clutter and occlusion are required. This work
presents a new statistical model, starting from the simplest example of
a random scene, viewed by two cameras. The most interesting aspects
are revealed by working in a single epipolar plane, and supposing that the
scene consists of identical discs of radius ε , as in fig. 1.

Figure 1: Viewing geometry. Monocular case, left: The scene S com-
prises discs of radius ε , with near-boundary ∂0S. The depth z0 of the
latter is normally distributed around µ . A ray in direction θ extends to
distance t through empty space, followed by distance s through the scene,
before striking an object. Equivalently, there are no disc-centres in the
2ε × s green rectangle, and so s is exponentially distributed. Binocular
case, right: both rectangles must be empty for the disc to be binocularly
visible. Note that equal increments of θR would span increasingly long
segments of ρL = s+ t as the difference-angle δ decreases.

It has previously been shown [3, 4] that, if the discs are distributed accord-
ing to a Poisson process [2] of intensity λ , then the distance to a visible
object follows an exponential distribution F of intensity 2ελ ;

pr(s|λ ,ε) = F
(
s, 2ελ

)
. (1)

This is because if an object at distance s is visible, then the s× 2ε rect-
angle around the corresponding ray must be empty (cf. fig. 1, left). But
the exponential model is not qualitatively realistic, because the mode of
the distribution is at zero, implying that the optical centre is fully amid
the clutter. Real range-data, in contrast, follows a two-tailed distribution
along each ray, as seen in fig. 2.
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Figure 2: Range densities. Left: maximum likelihood ex-Gaussian fit to
the upper ‘canopy’ regions of 14 range-scans of a forest scene. Middle:
fit to the central 120◦×40◦ ‘trunks’ regions, which is most representative
of heterogeneous clutter. Right: fit to the lower ‘ground’ regions, which
is more Gaussian. The blue dot is the mean of each data-set.

A more realistic visibility density is proposed here, in which the optical
centre is displaced from the scene S by a shift t. If the near-boundary ∂0S
of the scene is locally perpendicular to the straight-ahead direction, at a
normally distributed distance G(z0,µ,σ), then a ray at angle θ passes a
distance t through empty space, where

pr(t |θ ,µ,σ) = G
(

t,
µ

cosθ
,

σ

cosθ

)
. (2)

The total distance ρ to a visible object is then ρ = s + t where s has an
exponential density (1) and t has a Gaussian density (2). It follows that

the density H of ρ is obtained by convolution, H = F? G. This can be
expressed as a standard ex-Gaussian distribution [1] where

pr(ρ |θ) = H
(

ρ, 2ελ ,
µ

cosθ
,

σ

cosθ

)
. (3)

Figure 2 shows that this model is a good fit to real range data, acquired
with an outdoor laser scanner.

It is straightforward to extend (3) to the binocular case, in which an
object is jointly visible if both left and right rays are unobstructed, hence

pr(ρL,ρR) = pr(ρL|θL)×pr(ρR|θR). (4)

This model is expressed in terms of scene-distances ρL and ρR, which
cannot be directly observed in practice. However, given that the two rays
must intersect, ρL and ρR are functions of the left and right visual direc-
tions θL and θR from optical centres from cL and cR respectively (cf. fig. 1,
right). Hence it is possible to reparameterize (4), in order to obtain the
conditional probability of observing a point in direction θR from cR, given
that it is observed in direction θL from cL. This density, which is supported
on an epipolar line, involves the Jacobian

JR(θ) = ρR

√
csc2 δ + cot2 δ , where δ = θ −θL (5)

such that JR(θR) accounts for the variation of the combined distances ρL

and ρR, with respect to θR. The complete conditional density is then

pr(θR |θL) = pr(ρL,ρR)× JR(θR)
/

SR(θL) (6)

where SR(θL) is the normalizing constant, which can be obtained (if re-
quired) by numerical integration. The density (6) is interesting, because
it balances two opposite tendencies. On one hand, the tails of the ex-
Gaussian parts (3) are exponentially decreasing, which means that distant
objects are less likely to be seen. On the other hand, the Jacobian term (5)
expresses the fact that, as the two visual directions become parallel, small
changes of θR cause big changes in ρL and ρR, making it more likely that
an object will be seen as θR approaches the vanishing point. Some exam-
ples and simulations of pr(θR |θL) are shown in fig. 3.
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Figure 3: Correspondence densities. Histograms show the angular dis-
tributions pr(θR|θL) obtained by Monte Carlo simulation, as functions
of θR, for two different directions θL. Red lines are predicted (not fitted)
distributions defined by (6). The angular sectors extend from the epipole
(−90◦, cf. fig. 1, right) to θL, which is the vanishing-point (blue dot) of
the ray through cL, as seen from cR.

In summary, the conditional probability of observing a point in a Pois-
son scene, given that it has already been observed in another view, has
been derived. In particular, it has been shown how this probability, as
a function of θR, is determined by the given direction θL and the clutter
intensity λ . This provides a theoretical basis for new Bayesian priors in
binocular image-matching.
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