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Gaussian Markov Random Fields (GMRF) have been exploited for
modeling textures and extracting effective texture features [1, 2]. Model
parameter estimates of low order GMRF have been widely used as the
conventional texture feature for texture image segmentation [6]. The
drawbacks of these features are firstly, their discriminative ability highly
depends on model selection, yet is restricted to low order models due
to computational concerns [2, 5]. Secondly, sufficiently large estima-
tion windows should be selected to well characterize the given texture yet
compromising accurate boundary localization [6]. Also the fact that the
estimated model parameters obey a certain probability distribution for a
given texture [3], has never been exploited when obtaining these features.

In this paper, instead of using model parameters as texture features,
we exploit the variations in low order GMRF parameter estimates, ob-
tained through model fitting in local region around the given pixel. A
spatially localized estimation process is carried out by using a moderately
small estimation window and modeling partial texture characteristics be-
longing to the local region through maximum likelihood method. Hence
the estimated values inherit significant fluctuations, spatially, which can
be related to texture pattern complexity. The variations occur in estimates
are quantified by normalized local histograms, maintaining simplicity and
efficiency and are named as PL histograms here. Selection of an accurate
window size for histogram calculation is very important for a better seg-
mentation. Since the variations occurred in estimates have a correlation
with the texture pattern, the correct window size is assumed to be nearly
equal to the average texture pattern size of the image. It is found via a
method based on the entropy of the texture image.
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Figure 1: Segmentation of large and medium size texture patters with
low order GMRF. (a)-(c) original images, (d)-(f), conventional GMRF
features [1] and (g)-(i) PL histogram. se− segmentation error.

The novel features capture the variations that occur in model pa-
rameters which provide useful information for texture segmentation. In
CGMRF features these important features are smoothed out by the esti-
mation process. Formulation of PL histogram involves using small neigh-
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Figure 2: Segmentation of images with close component textures. (a)
original images, (b) segmentation target, (c) Gabor features and (d) PL
histograms.

Model parameter estimation by MLE 

(low order GMRF with small estimation window) 

Window size selection for histogram calculation 

by entropy based method 

Integrated active contour based segmentation 

Test image 

Segmented image 

F
e
a
tu

re
 E

x
tr

a
c
ti

o
n
 P

h
a
se

 
S
e
g
m

e
n
ta

ti
o
n
 

P
h
a
se

 

Feature smoothing 

Construction of local distributions of model 

parameters (PL histograms) 

Figure 3: Proposed texture feature extraction and segmentation algorithm.

borhood sizes and estimation window sizes, hence giving lower computa-
tional cost and better boundary localization. They extend the possibility
of using low order GMRF for segmenting fine to very large texture pat-
terns (figure 1) and also improving the segmentation of textures with close
characteristics (figure 2).

Extracted features are smoothed using diffusion via Beltrami flow and
directed to the integrated active contour model [4] for unsupervised tex-
ture segmentation. The proposed method is illustrated in figure 3. Ex-
perimental results on statistical and structural component textures show
improved discriminative ability of the features compared to some recent
algorithms in the literature.
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