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The underlying main goal of all research in visual recognition is to
enable vision-based artificial systems to operate autonomously in the real
world. However, even the best system we can currently engineer is bound
to fail whenever the setting is not heavily constrained. This is because the
real world is generally too complicated and too unpredictable to be sum-
marized within a limited set of specifications. This calls for algorithms
able to support open ended learning of visual classes which can process
continuously new data guided by past experience. The main issues of
open ended learning has been typically addressed in a fragmented fashion
in the literature. A first component is that of transfer learning, i.e. the
ability to leverage over prior knowledge when learning a new class, espe-
cially in presence of few training data [3]. A second component is that
of updating the learned visual class, as new samples arrive sequentially.
The dominant approach in the literature here is that of online learning [1]:
predictions are made on the fly and the model is progressively updated at
each step, on the basis of the given true label. In this paper we propose
to merge together these two components, using prior knowledge sources
for initializing the online learning process on a new target task through
transfer learning.

We consider binary object-vs-background problems where each im-
age is represented by a vector xxx ∈ Rd associated to a unique label y ∈
{−1,1} and the prediction mechanism is based on a hyperplane which di-
vides the instance space into two parts. This hyperplane is defined by its
orthogonal vector www ∈ Rd and the predicted label is given by sign(www·xxx).
We assume without loss of generality that ‖xxxt‖ ≤ 1 and we define the
hinge loss with margin 1 of a classifier www over an instance / label pair
(xxx,y) as `H(www·xxx,y) = max{0,1− ywww·xxx} .

We adopt the Passive Aggressive (PA) algorithm [2] as our basic on-
line learning method. A sequence of instances are presented to the learner
xxxt , t = 1, . . . ,T which generates the corresponding prediction and then
receives the true label yt which is used to update its hypothesis for future
trials. Starting from an arbitrary hypothesis, www1, at the t−th round PA is
updated solving the following optimization problem

wwwt+1 = argmin
www

1
2
‖www−wwwt‖2+Cξ s.t. `H(www·xxxt ,yt)≤ ξ and ξ ≥ 0 ,

(1)
where C is the aggressiveness parameter that trades off the two quantities
in (1).

Among the existing transfer learning approaches we consider the Multi-
KT algorithm [4]. We suppose to have k binary source tasks and a dis-
criminative model learned for each of them in terms of a linear function
h j(xxx) = ŵww j · xxx for j = 1, . . . ,k . For a novel target task with T avail-
able training samples (xxxt ,yt) t = 1, . . . ,T , Multi-KT solves the following
optimization problem [4]:

min
www,b

1
2

∥∥∥∥∥www−
k

∑
j=1

β jŵww j

∥∥∥∥∥
2

+
C
2

T

∑
t=1

(yi−www · xxxt −b)2 . (2)

Here the weights β j assigned to each prior knowledge are found by mini-
mizing ∑

T
t=1 `

H(ỹt ,yt) subject to ‖βββ‖2 ≤ 1, where ỹt is the leave-one-out
prediction for the t−th sample, and βββ = (β1, . . . ,βk) .

Thus we define a learning algorithm based on two phases: at the be-
ginning n target training samples are given as input to Multi-KT which
outputs the corresponding target model, and as second step, this model is
used to initialize the online learning process. This has several advantages:
by using a principled transfer learning process we can study the relation
between the old sources and the new target. Within this framework, few
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Figure 1: Left column: single source experiments. Right column: 255
object classes are considered as sources, while the remaining one defines
the target problem. Top line: recognition rate results on the test set as a
function of the number of training samples. Bottom line: corresponding
rate of mistakes for the online learning methods.

samples might be sufficient to indicate in which part of the original space
the correct solution (the best in term of generalization capacity) should
be sought. At the same time, by using the transfer process only at the
beginning we limit its computational burden. Then PA guarantees that
the updated solution is at each step close to the previous one: this helps
keeping the positive effect produced by Multi-KT together with the proper
introduction of new information when necessary. We show theoretically
that a good initialization for the online learning process produces a tighter
mistake bound compared to previous work (OTL [5]), while empirically
improving the recognition performance on an unseen test set. We name
this algorithm TROL: TRansfer initializes Online Learning and we also
consider the possibility to reweight at each step prior and new knowledge
defining the variant TROL+.

We ran experiments on the Caltech 256 database selecting related /
unrelated object classes and one or multiple prior knowledge sources, be-
side considering the full dataset (see Figure 1). Over all the experiments
TROL and TROL+ present better results than PA, never showing negative
transfer, and they are able to match the batch performance of Multi-KT on
the test set. In terms of online mistakes, TROL and TROL+ outperform
all the other considered baselines.
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