
HIROSE, SAITO: FAST LINE DESCRIPTION FOR LINE-BASED SLAM 1

Fast Line Description for Line-based SLAM

Keisuke Hirose
hikeisuke@hvrl.ics.keio.ac.jp

Hideo Saito
http://hvrl.ics.keio.ac.jp/saito/

Graduate School of Science and
Technology,
Keio University

Abstract

Simultaneous localization and mapping (SLAM) is a technique to simultaneously
perform mapping of environments and localization of a camera in real-time. Most exist-
ing monocular vision based SLAM techniques use point features as landmarks. However,
images of artificial environments with little texture often contain many line segments,
whereas few point features can be localized in such a scene. We propose here a real-
time line-based SLAM system, and a novel method for describing the features of line
segments (LEHF:Line-based Eight-directional Histogram Feature) in order to establish
correct 2D and 3D line correspondences (2D-3D correspondences). LEHF is a fast and
efficient way of describing features of line segments, which are detected by the line seg-
ment detector (LSD) method. The line-based orthogonal iteration (LBOI) method and
the RANSAC algorithm are applied for the camera pose estimation. We conducted an
experiment in order to test our SLAM system in a desktop environment and to perform
augmented reality (AR). Moreover our SLAM system was evaluated by synthetic data.

1 Introduction

Simultaneous localization and mapping (SLAM) is a technology that involves estimating
both a camera pose and the structure of the environment in real-time. Vision based SLAM
is used for real applications such as augmented reality[3, 6]. Most existing monocular vi-
sion based SLAM techniques employ point features as landmarks. Eade and Drummond
used a FastSLAM algorithm[15] for their SLAM system with a Rao-Blackwellized particle
filter that can handle a large number of landmarks[7]. Klein and Murray proposed parallel
tracking and mapping (PTAM) that achieved a real-time application with several thousand
landmarks[12].

Our approach uses line segments rather than points as landmarks, since there are some ad-
vantages in using line segments. Images of artificial environments with little texture contain
many line segments, whereas few point features can be localized in such a scene. Moreover,
line segment detection is more reliable than point detection. Line segment matching is also
more robust than point matching with respect to partial occlusion and view-point changes.

This paper proposes a real-time line-based SLAM system that uses a Line-based Eight-
directional Histogram Feature (LEHF), which is our new line descriptor, to establish correct
2D-3D correspondences. Existing line-based SLAM systems simply establish 2D-3D cor-
respondences by finding the detected 2D line segment that is near the line segment (3D)
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projected by a previous camera pose in the image space. This often results in wrong cor-
respondences being detected. With our approach, it is possible to find a detected 2D line
segment that correctly corresponds to the projected 3D line segment by computing the dis-
tance between LEHFs. Hence, LEHF is used to achieve correct matching between 2D and
3D line segments and is also used for tracking line segments in mapping.

Our SLAM system was tested in a desktop environment for augmented reality (AR) and
was compared with the existing approach by using synthetic data.

2 Related work

Chandrakeret al. used stereo images for their real-time SLAM system using lines[2]. Lines
of two stereo pairs (four images) were matched to compute the camera pose. Elqursh and
Elgammal presented a method to estimate a relative camera pose between two images from
lines[8]. Their method requires only three lines, with two of the lines parallel and orthogonal
to the third.

With regard to the real-time monocular line-based SLAM, Gee and Mayol-Cuevas demon-
strated a real-time SLAM system using line segments[10]. They used a modified version of
Gates’contour tracing algorithm[9] for line segment detection and used a virtual visual
servoing (VVS) method[4] to estimate a camera pose. Furthermore, the unscented Kalman
filter (UKF) initializes new 3D line segments and estimates their depth. Smithet al. also
demonstrated a real-time line-based SLAM that extended the point-based extended Kalman
filter (EKF) SLAM system[5] to line correspondences[17].

These two SLAM systems[10, 17] do not use any descriptions of line segments. In
their systems, the projected 3D line segment simply corresponds to the nearest detected 2D
line segment in the image space to establish 2D-3D correspondences. Therefore, wrong
correspondences often occur in complicated scenes that include many line segments. Zhang
and Koch presented a real-time line-based SLAM that uses EKF for camera pose estimation
and a line-based recovery method using angle histograms[20]. In their method, the mean-
standard deviation line descriptor (MSLD)[18] that uses mean and standard deviations for
the descriptions of line segments is used for matching line segments between the current
frame and stored key-frames in order to relocalize the system. Since the MSLD is quite
computationally expensive, they used the MSLD only for recovering. During normal SLAM
procedure, nearby lines in parameter space are used for tracking.

We propose here a real-time line-based SLAM system, and a fast line descriptor (LEHF).
LEHF is a fast and efficient way of describing features of line segments, which is used to
establish correct 2D-3D correspondences and to track detected line segments in mapping.
Also the use of LEHF provides robustness for the camera lost. We based the development of
LEHF on the MSLD[18], which uses a SIFT[13]-like strategy.

3 SLAM based on line descriptors

3.1 Overview of system

In this section, we describe the overview of our system shown in Fig.1.
In localization, LSD detects line segments and LEHF is computed for each detected

line segment at every frame. In order to estimate a camera pose, 2D-3D correspondences are
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Figure 1:Overview of system

established by LEHF matching. LBOI and the RANSAC algorithm estimate the camera pose
from 2D-3D correspondences. Then all 3D line segments are re-projected by the estimated
camera pose to compute re-projection errors and confidences which represent the reliability
of 3D line segments. This confidence is used for the subsequent camera pose estimation
(LBOI). In mapping, line segments are tracked between frames by using LEHF to map 3D
line segments.

Before starting the system, SLAM needs to initialize the world coordinate that is the
basic plane for AR. Lines in two images do not put any constraints on the camera pose[19].
Therefore, several methods to estimate the relative camera pose between two images from
lines were presented[1, 8, 16]. In our SLAM system, we employ a simple way to carry out
map initialization by using a fiducial marker that is detected automatically.

3.2 Localization

In this section, we describe the details of localization in which a camera pose is estimated
from 2D-3D correspondences at every frame.

3.2.1 Line segment detection

We use the LSD method[11] for the line segment detection at every frame. LSD detects
line segments through the gradient image with a false detection control. LSD automatically
detects correct line segments even in complicated scenes that include many line segments.

3.2.2 Computation of LEHF

To achieve correct matches and make our system more robust to camera pose estimation, we
compute LEHF for each detected line segment.

We based the development of LEHF on the MSLD[18], which uses a SIFT-like strategy.
Since the MSLD is quite computationally expensive, it is difficult to use the MSLD in the
real-time system. Therefore our line descriptor LEHF is computed fast in order to be used in
the real-time system by taking a constant number of points around the line segment to com-
pute differential values. From the computed differential values, we make eight-directional
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Figure 2:Overview of LEHF

gradient histograms to describe the line segment, referred to as LEHF. Since rotating the in-
put image takes computation time, we do not rotate the input image but rectify the direction
of the gradient vector computed from differential values in order to obtain rotation invariant,
which is described later in detail.

Fig. 2 shows how LEHF is computed. Here,Sj is the number of points along thej
axis, andSi is the number of points along thei axis that is perpendicular to the line seg-
ment. Then we denote pointpi j (pxi j , pyi j ). The dxi j anddyi j are the differential values
for x and y directions. Fromdxi j ,dyi j , a gradient vector of which the length isLi j and the
direction isθi j is computed. We denote the intensity value in the input imageI(pxi j , pyi j )
anddxi j ,dyi j ,Li j ,θi j are computed as shown in eq.1,2,3,4. φ in the figure is the angle of the
line segment.

dxi j = I(pxi j +1, pyi j )− I(pxi j −1, pyi j ) (1)

dyi j = I(pxi j , pyi j +1)− I(pxi j , pyi j −1) (2)

Li j =
√

dx2
i j +dy2

i j (3)

θi j = arctan(
dyi j

dxi j
) (4)

As shown in the figure, we get one eight-directional gradient histogram for eachi by
summingSj gradient vectors, which is denoted ashi = (hi,0,hi,1, · · · ,hi,6,hi,7). LEHF is
obtained by merging allhi , which is denoted asd = (h1,h2, · · · ,hi , · · · ,h(Si+1)). Why we
compute(Si +1) histograms is that two histograms are computed for the center point (on the
line segment).

However if we simply merge allhi , computed LEHFs are not matched between the im-
ages that one image is rotated 180 degrees since the directions ofhi are not matched. There-
fore, LEHF is designed symmetrically. As shown in the figure, the directions ofhi of lower
side is inverted to that of upper side. Moreover, computedhi are merged symmetrically to
obtaind. Since both histograms (upper side and lower side) are computed for the center
point (on the line segment), we get(Si +1) histograms.

If we assume thatSi = 5, 6 eight-directional gradient histograms are obtained and we
computed symmetrically as eq.5. However, as LEHF is computed symmetrically, we need
to compute another distance between LEHFs that one LEHF vector is inverted.
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d = (h1,0, · · · ,h1,7,h2,0, · · · ,h2,7,h3,0, · · · ,h3,7,h4,7, · · · ,h4,0,h5,7, · · · ,h5,0,h6,7, · · · ,h6,0) (5)

The distance betweenpi j andpi+1, j is three pixels. The weight for eachi is wi =Gσ ((i−
Si+1

2 )3). Gσ is a normal distribution that has the varianceσ . The argument ofGσ is the
distance from the center point. The algorithm for computing LEHF is as follows.

1. Firstly, initialize LEHF (h1, · · · ,h(Si+1)) by zero.
2. For pointpi j , dxi j anddyi j are computed.
3. A gradient vector that has lengthLi j and directionθi j is computed fromdxi j anddyi j .
4. θi j is rectified by subtractingφ from θi j to obtain rotation invariant.
5. θi j is quantized into eight directions to obtain the bin(id = [0∼ 7]) of thehi .
6. hi is updated byhi,id ← hi,id +wi×Li j .
7. For all points (p11∼ pSiSj ), step 2∼ 6 are carried out.
8. Mergeh1, · · · ,h(Si+1) symmetrically (eq.5) to obtaind and normalize it to set the

norm ofd one.

We used 45 points forSj and 13 points forSi in the experiments. Therefore, we get an
8× (13+1) = 112 dimensional descriptor for the LEHF.

3.2.3 Establishment of 2D-3D correspondences

2D-3D correspondences are established by LEHF matching to estimate the camera pose. In
our system, each 3D line segment has one state of three which is calculated by re-projection
errors. First one denotes an inlier line. Second one denotes an outlier line. Whether the line is
inlier or outlier is simply calculated by a threshold of the re-projection error that is also used
in RANSAC. Third one denotes that the line is outside of the image space. In our system,
only 3D line segments that have the state of inlier are projected by a previous camera pose.
Then, for each projected 3D line segment, we search some detected 2D line segments which
are near from the projected 3D line segment in the image space and the angular difference
with the projected 3D line segment is within the threshold. LEHF distance is computed for
those searched 2D line segments and finally the 3D line segment corresponds to a 2D line
segment that has the minimum Euclidean distance between LEHFs.

3.2.4 Camera pose estimation

In order to estimate a camera pose robustly, we use the RANSAC algorithm and the LBOI
method[21] that is the extended method of OI algorithm[14] to lines. Since the LBOI method
can estimate the camera pose from at least three pairs, three pairs of a 2D-3D correspondence
are randomly chosen and the camera pose is estimated in the iterations of RANSAC. For each
estimated camera pose, re-projection errors are computed for all 2D-3D correspondences.
The distance and the angular difference between the detected 2D line segment and the re-
projected 3D line segment are computed as the re-projection error, which are shown in the
Fig. 3. To reduce computational cost, we simply take a center point ofl1 and consider the line
orthogonal tol1. ThenEdist is the distance between the center point ofl1 and the intersection
point betweenl2 and the orthogonal line.Eangle is the angular difference betweenl1 andl2.
Then the re-projection errorE is obtained by summingEdist andEangle. If E is smaller than
the thresholdEth, the 2D-3D correspondence is inlier. IfE is larger thanEth, the 2D-3D
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correspondence is outlier. By updating the maximum inliers in the iterations of RANSAC,
we select the set of maximum inliers of 2D-3D correspondences. Then we estimate the final
camera pose from those maximum inliers of 2D-3D correspondences by the LBOI. Selected
2D-3D correspondences are weighted by the confidence of each 3D line segment in the final
LBOI estimation.

Re-projected 3D line segment

Eangle
Edist

Detected 2D line segment

Figure 3:Edist andEangle are computed for a pair of 3D and 2D line segments(l1 andl2).

3.2.5 Updating of confidences and LEHF

In our system, each 3D line segment has LEHF and a confidence representing the reliability
of the 3D line segment. The confidence that has a value of 0∼ 1 is computed by the re-
projection error. Confidences and LEHF of 3D line segments are updated at every frame.

We re-project all 3D line segments by the estimated camera pose to compute re-projection
errors. The re-projection errorE is computed in the same way as the camera pose estima-
tion 3.2.4. Here, the corresponding 2D line segment is the nearest line segment from the
re-projected 3D line segment in the images space. As I described in sec.3.2.3, each 3D line
segment has one state of three. IfE is smaller thanEth, the state of the 3D line segment will
be inlier. If E is larger, the state will be outlier. If the re-projected line segment is outside
of the image space, the state will be outside of the image. For the outside 3D line segment,
nothing is done. For the inlier 3D line segment, the new confidence is computed and the con-
fidence is updated by averaging the current confidence and the new confidence. We set the
converted confidence value of the re-projection errorEth 0.8 and the new confidenceCnew

is simply computed asCnew= 1− (E/(Eth× 5)). Why we multiplyEth by 5 is to set the
converted confidence value ofEth 0.8. The LEHF is also updated with that of corresponding
2D line segment. For the outlier 3D line segment, the current confidence is decreased. The
3D line segment of which the confidence is lower than zero is removed from the system.Eth

is set 5 in experiments.
In our system, newly mapped 3D line segments are not used for localization during the

first 20 frames. Newly mapped 3D line segments that are re-projected into outside of the
image space are immediately removed.

3.3 Mapping

Mapping starts regularly. In mapping, line segments not used for localization are tracked
between frames as new line segments. Computed LEHF is used to track line segments cor-
rectly. A 3D line that is estimated from two images is a line of intersection between two
planes in the Fig.4. We track 8 images and establish 7 pairs of two images as image 1-2,
image 1-3,· · · , image 1-8. Then a 3D line is estimated for each pair and 7 3D lines are
computed. A final 3D line is estimated by averaging those 7 3D lines.
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Image1 Image2

3D line

Figure 4:Estimation of a 3D line from two images.

4 Experiments

4.1 LEHF matching

Fig. 5 shows the results of LEHF matching. We manually counted the number of correct
and incorrect matches. In the figure, most matches are correct even if there is some rotation
between two images.

(a) Correct: 73, incorrect: 0 (b) Correct: 61, incorrect: 0 (c) Correct: 40, incorrect: 2

(d) Correct: 80, incorrect: 3 (e) Correct: 73, incorrect: 5 (f) Correct: 120, incorrect: 16
Figure 5:Results of LEHF matching.

4.2 Experimental results of SLAM system

4.2.1 Synthetic data experiments

We evaluated our SLAM system by using synthetic data. We built a simple synthetic envi-
ronment that is shown in the left image of Fig.6. Then 447 sequential images were generated
with perfectly known camera poses. In this experiment, the fiducial marker of which size is
10cm×10cmwas used for initialization. After 153th frame, the fiducial marker disappeared
as shown in the right image of Fig.6 and the camera pose was estimated by using only
mapped 3D line segments. Moreover, we compared our SLAM system with the standard
line-based SLAM which did not use LEHF for tracking in mapping and for establishing 2D-
3D correspondences. The standard line-based SLAM used nearest neighbor (NN) search that
searched the nearest line segment in the image space as existing line-based SLAM methods.
The other methods (line segment detection, camera pose estimation, etc.) are completely
same as our SLAM system. The results are shown in Fig.7. In our system, when the
number of 2D-3D correspondences are too small or the camera move distance between the
estimated camera pose and the previous camera pose is too long, the system assumes that
the the camera pose estimation failed in order to prevent updating by bad parameters. In 447
frames, the standard NN method failed to estimate for 65 frames whereas our SLAM system
failed to estimate for only 7 frames. We calculated the root mean squared error with ground
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truth for each graph except failed frames and we show them in Tab.1. As shown in the
table, the results of our SLAM system using LEHF are more accurate than the standard NN
method.

Figure 6:Constructed synthetic environment.
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Figure 7:Comparison of the ground truth and our SLAM and the standard NN method.

Rot. X (deg) Rot. Y (deg) Rot. Z (deg)
Proposed method 2.03 0.24 0.73
Standard NN method 2.53 0.43 1.40

Trans. X (mm) Trans. Y (mm) Trans. Z (mm)
Proposed method 0.85 1.12 3.96
Standard NN method 2.93 1.57 7.62

Table 1:RMSE between the estimated values and ground truth.

4.2.2 Real data experiments

In this experiment, we captured 640×480 images from a web camera(Logicool Webcam Pro
9000) and tested our SLAM system on a desktop PC (CPU:Intel(R) Core(TM) i3 CPU 3.07
GHz, Memory: 2.92 GB). Fig.8 shows mapped 3D line segments and estimated camera
poses. Our SLAM starts with a fiducial marker, which is shown in the first image of Fig.
9. In Fig. 9, green line segments are inlier line segments and red line segments are outlier
line segments. Some augmented reality scenes are shown in Fig.10. The time required to
process the tasks in Fig.8 is plotted in Fig.11. The mean processing time of 1087 frames
was 87.78ms and mean fps was 11.39fps.
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Figure 8:Mapped 3D line segments and estimated camera poses.

Figure 9:Results of our SLAM system in a desktop environment.

Figure 10:Some augmented reality scenes.
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Figure 11:Processing time of our SLAM system.

5 Conclusion

We have presented a real-time line-based SLAM system that uses a line descriptor called
a LEHF. We showed how our SLAM system can be used in a small desktop environment.
By using LEHF, 2D-3D correspondences are established correctly and the camera poses are
robustly estimated as shown in the experimental results. Also, newly detected line segments
are correctly tracked between frames in mapping. The use of line segments as landmarks
provides robust detection with respect to large viewpoint changes and partial occlusion. Our
SLAM system was evaluated by synthetic data and demonstrated for AR in a desktop envi-
ronment.
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