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Abstract

Simultaneous localization and mapping (SLAM) is a technique to simultaneously
perform mapping of environments and localization of a camera in real-time. Most exist-
ing monocular vision based SLAM techniques use point features as landmarks. However,
images of artificial environments with little texture often contain many line segments,
whereas few point features can be localized in such a scene. We propose here a real-
time line-based SLAM system, and a novel method for describing the features of line
segments (LEHF:Line-based Eight-directional Histogram Feature) in order to establish
correct 2D and 3D line correspondences (2D-3D correspondences). LEHF is a fast and
efficient way of describing features of line segments, which are detected by the line seg-
ment detector (LSD) method. The line-based orthogonal iteration (LBOI) method and
the RANSAC algorithm are applied for the camera pose estimation. We conducted an
experiment in order to test our SLAM system in a desktop environment and to perform
augmented reality (AR). Moreover our SLAM system was evaluated by synthetic data.

1 Introduction

Simultaneous localization and mapping (SLAM) is a technology that involves estimati
both a camera pose and the structure of the environment in real-time. Vision based SL
is used for real applications such as augmented reali6}[ Most existing monocular vi-
sion based SLAM techniques employ point features as landmarks. Eade and Drumrr
used a FastSLAM algorithrip] for their SLAM system with a Rao-Blackwellized particle
filter that can handle a large number of landmarksKlein and Murray proposed parallel
tracking and mapping (PTAM) that achieved a real-time application with several thouse
landmarks] 2].

Our approach uses line segments rather than points as landmarks, since there are sor
vantages in using line segments. Images of artificial environments with little texture cont
many line segments, whereas few point features can be localized in such a scene. More
line segment detection is more reliable than point detection. Line segment matching is
more robust than point matching with respect to partial occlusion and view-point change

This paper proposes a real-time line-based SLAM system that uses a Line-based E
directional Histogram Feature (LEHF), which is our new line descriptor, to establish corr
2D-3D correspondences. Existing line-based SLAM systems simply establish 2D-3D
respondences by finding the detected 2D line segment that is near the line segment
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projected by a previous camera pose in the image space. This often results in wrong ce
respondences being detected. With our approach, it is possible to find a detected 2D li
segment that correctly corresponds to the projected 3D line segment by computing the di
tance between LEHFs. Hence, LEHF is used to achieve correct matching between 2D a
3D line segments and is also used for tracking line segments in mapping.

Our SLAM system was tested in a desktop environment for augmented reality (AR) an
was compared with the existing approach by using synthetic data.

2 Related work

Chandrakeet al. used stereo images for their real-time SLAM system using lifjek[nes

of two stereo pairs (four images) were matched to compute the camera pose. Elqursh a
Elgammal presented a method to estimate a relative camera pose between two images f
lines[8]. Their method requires only three lines, with two of the lines parallel and orthogonal
to the third.

With regard to the real-time monocular line-based SLAM, Gee and Mayol-Cuevas demo
strated a real-time SLAM system using line segmérifs[They used a modified version of
Gates’ contour tracing algorithng]] for line segment detection and used a virtual visual
servoing (VVS) method]] to estimate a camera pose. Furthermore, the unscented Kalmat
filter (UKF) initializes new 3D line segments and estimates their depth. Sehidh also
demonstrated a real-time line-based SLAM that extended the point-based extended Kalm
filter (EKF) SLAM system}] to line correspondences]].

These two SLAM system&p, 17] do not use any descriptions of line segments. In
their systems, the projected 3D line segment simply corresponds to the nearest detected
line segment in the image space to establish 2D-3D correspondences. Therefore, wro
correspondences often occur in complicated scenes that include many line segments. Zh:
and Koch presented a real-time line-based SLAM that uses EKF for camera pose estimati
and a line-based recovery method using angle histogédinsin their method, the mean-
standard deviation line descriptor (MSLDJ that uses mean and standard deviations for
the descriptions of line segments is used for matching line segments between the curre
frame and stored key-frames in order to relocalize the system. Since the MSLD is quit
computationally expensive, they used the MSLD only for recovering. During normal SLAM
procedure, nearby lines in parameter space are used for tracking.

We propose here areal-time line-based SLAM system, and a fast line descriptor (LEHF
LEHF is a fast and efficient way of describing features of line segments, which is used t
establish correct 2D-3D correspondences and to track detected line segments in mappi
Also the use of LEHF provides robustness for the camera lost. We based the development
LEHF on the MSLD[ 8], which uses a SIFT[3]-like strategy.

3 SLAM based on line descriptors

3.1 Overview of system

In this section, we describe the overview of our system shown inlkig.
In localization, LSD detects line segments and LEHF is computed for each detecte
line segment at every frame. In order to estimate a camera pose, 2D-3D correspondences
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Figure 1:Overview of system

established by LEHF matching. LBOI and the RANSAC algorithm estimate the camera p
from 2D-3D correspondences. Then all 3D line segments are re-projected by the estim
camera pose to compute re-projection errors and confidences which represent the relia
of 3D line segments. This confidence is used for the subsequent camera pose estim
(LBOI). In mapping, line segments are tracked between frames by using LEHF to map
line segments.

Before starting the system, SLAM needs to initialize the world coordinate that is tl
basic plane for AR. Lines in two images do not put any constraints on the camera3jose|[
Therefore, several methods to estimate the relative camera pose between two images
lines were presentet[8, 16]. In our SLAM system, we employ a simple way to carry out
map initialization by using a fiducial marker that is detected automatically.

3.2 Localization

In this section, we describe the details of localization in which a camera pose is estimz
from 2D-3D correspondences at every frame.

3.2.1 Line segment detection

We use the LSD methodl]] for the line segment detection at every frame. LSD detect
line segments through the gradient image with a false detection control. LSD automatic
detects correct line segments even in complicated scenes that include many line segme

3.2.2 Computation of LEHF

To achieve correct matches and make our system more robust to camera pose estimatic
compute LEHF for each detected line segment.

We based the development of LEHF on the MSILB}[ which uses a SIFT-like strategy.
Since the MSLD is quite computationally expensive, it is difficult to use the MSLD in th
real-time system. Therefore our line descriptor LEHF is computed fast in order to be use
the real-time system by taking a constant number of points around the line segment to c
pute differential values. From the computed differential values, we make eight-directio
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Figure 2:Overview of LEHF

gradient histograms to describe the line segment, referred to as LEHF. Since rotating the |
put image takes computation time, we do not rotate the input image but rectify the directio
of the gradient vector computed from differential values in order to obtain rotation invariant
which is described later in detail.

Fig. 2 shows how LEHF is computed. Her§; is the number of points along thie
axis, andS is the number of points along theaxis that is perpendicular to the line seg-
ment. Then we denote poimk;(px;, pyij). Thedx; anddy; are the differential values
for x and y directions. Frondx;,dyij, a gradient vector of which the lengthlis and the
direction is6; is computed. We denote the intensity value in the input im&g#;, py;;)
anddx;,dyij,Lj, 6 are computed as shown in ef2,3,4. @ in the figure is the angle of the
line segment.

dxj = 1(pxj +1, pyj) — 1(PXj — 1, pyij) 1)
dyij = 1(pXj, pyij +1) — 1(pX;j, pyij — 1) )
Lij = d)g-zj +dyizj 3)

o dyij
6 = arctar dej) (4)

As shown in the figure, we get one eight-directional gradient histogram forielagh
summing$S; gradient vectors, which is denoted las= (hio,hi1,--- ,hig,hi 7). LEHF is
obtained by merging ah;, which is denoted ad = (hy,hz,--- ,hi,--- ,hgq)). Why we
compute(S + 1) histograms is that two histograms are computed for the center point (on the
line segment).

However if we simply merge ali;, computed LEHFs are not matched between the im-
ages that one image is rotated 180 degrees since the directibnarefnot matched. There-
fore, LEHF is designed symmetrically. As shown in the figure, the directiohs aff lower
side is inverted to that of upper side. Moreover, computeare merged symmetrically to
obtaind. Since both histograms (upper side and lower side) are computed for the cent
point (on the line segment), we g& + 1) histograms.

If we assume tha§ = 5, 6 eight-directional gradient histograms are obtained and we
computed symmetrically as egs. However, as LEHF is computed symmetrically, we need
to compute another distance between LEHFs that one LEHF vector is inverted.
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d=(hio,---,h17,ho0, - ,h27,h30,--- ,h37,ha7,--- ,hao,h57,--- ,hs0,he7,--- ,he0) (5)

The distance betwegm; andpi1 j is three pixels. The weight for eacis w; = Gy ((i —
%)3). Gy is a normal distribution that has the varianze The argument oG, is the
distance from the center point. The algorithm for computing LEHF is as follows.

. Firstly, initialize LEHF (y,---,h(s 1)) by zero.

. For pointp;j, dxj anddy;; are computed.

. A gradient vector that has lendth and directio}; is computed fronulx; anddy;.

. 8 is rectified by subtracting from 8; to obtain rotation invariant.

. 6 is quantized into eight directions to obtain the biné& [0 ~ 7]) of theh;.

. hj is updated by jg < hijg +wi x Ljj.

. For all points f11 ~ pss;), step 2~ 6 are carried out.

. Mergehy, -+ ,h(g41) symmetrically (eq.5) to obtaind and normalize it to set the
norm ofd one.

O~NO O WNPEP

We used 45 points fag; and 13 points fo§ in the experiments. Therefore, we get an
8x (13+ 1) = 112 dimensional descriptor for the LEHF.

3.2.3 Establishment of 2D-3D correspondences

2D-3D correspondences are established by LEHF matching to estimate the camera pos
our system, each 3D line segment has one state of three which is calculated by re-proje
errors. Firstone denotes an inlier line. Second one denotes an outlier line. Whether the li
inlier or outlier is simply calculated by a threshold of the re-projection error that is also us
in RANSAC. Third one denotes that the line is outside of the image space. In our syst
only 3D line segments that have the state of inlier are projected by a previous camera [
Then, for each projected 3D line segment, we search some detected 2D line segments v
are near from the projected 3D line segment in the image space and the angular differ
with the projected 3D line segment is within the threshold. LEHF distance is computed
those searched 2D line segments and finally the 3D line segment corresponds to a 2D
segment that has the minimum Euclidean distance between LEHFs.

3.2.4 Camera pose estimation

In order to estimate a camera pose robustly, we use the RANSAC algorithm and the LE
methodP1] that is the extended method of Ol algorithiv] to lines. Since the LBOI method
can estimate the camera pose from at least three pairs, three pairs of a 2D-3D correspon
are randomly chosen and the camera pose is estimated in the iterations of RANSAC. For
estimated camera pose, re-projection errors are computed for all 2D-3D correspondel
The distance and the angular difference between the detected 2D line segment and th
projected 3D line segment are computed as the re-projection error, which are shown in
Fig. 3. To reduce computational cost, we simply take a center poiataofd consider the line
orthogonal td;. ThenEyig is the distance between the center poin aind the intersection
point betweerl, and the orthogonal lineEangie is the angular difference betwegnandls.
Then the re-projection errdt is obtained by summingqgist andEangie If E is smaller than
the thresholdg, the 2D-3D correspondence is inlier. Bf is larger tharg,, the 2D-3D
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correspondence is outlier. By updating the maximum inliers in the iterations of RANSAC,
we select the set of maximum inliers of 2D-3D correspondences. Then we estimate the fin
camera pose from those maximum inliers of 2D-3D correspondences by the LBOI. Selectt
2D-3D correspondences are weighted by the confidence of each 3D line segment in the fir
LBOI estimation.

Detected 2D line segment I,

1
Re-projected 3D line segment

Figure 3:Eqist andEange are computed for a pair of 3D and 2D line segmdntagdl?).

3.2.5 Updating of confidences and LEHF

In our system, each 3D line segment has LEHF and a confidence representing the reliabil
of the 3D line segment. The confidence that has a value~oflds computed by the re-
projection error. Confidences and LEHF of 3D line segments are updated at every frame.
We re-project all 3D line segments by the estimated camera pose to compute re-projecti
errors. The re-projection err@ is computed in the same way as the camera pose estima:
tion 3.2.4 Here, the corresponding 2D line segment is the nearest line segment from th
re-projected 3D line segment in the images space. As | described i8.8e8.each 3D line
segment has one state of threeklis smaller tharkyy, the state of the 3D line segment will
be inlier. If E is larger, the state will be outlier. If the re-projected line segment is outside
of the image space, the state will be outside of the image. For the outside 3D line segme
nothing is done. For the inlier 3D line segment, the new confidence is computed and the co
fidence is updated by averaging the current confidence and the new confidence. We set
converted confidence value of the re-projection eE@r0.8 and the new confiden€&ew
is simply computed a€new= 1— (E/(Eh x 5)). Why we multiply Eip by 5 is to set the
converted confidence value Bf,, 0.8. The LEHF is also updated with that of corresponding
2D line segment. For the outlier 3D line segment, the current confidence is decreased. T
3D line segment of which the confidence is lower than zero is removed from the sy&gtem.
is set 5 in experiments.
In our system, newly mapped 3D line segments are not used for localization during th
first 20 frames. Newly mapped 3D line segments that are re-projected into outside of th
image space are immediately removed.

3.3 Mapping

Mapping starts regularly. In mapping, line segments not used for localization are tracke
between frames as new line segments. Computed LEHF is used to track line segments c
rectly. A 3D line that is estimated from two images is a line of intersection between two
planes in the Fig4. We track 8 images and establish 7 pairs of two images as image 1-2
image 1-3,---, image 1-8. Then a 3D line is estimated for each pair and 7 3D lines are
computed. A final 3D line is estimated by averaging those 7 3D lines.
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Figure 4:Estimation of a 3D line from two images.

4 Experiments

4.1 LEHF matching

Fig. 5 shows the results of LEHF matching. We manually counted the number of corr
and incorrect matches. In the figure, most matches are correct even if there is some rot
between two images.

(d) Correct: 80, incorrect: 3 (e) Correct: 73, incorrect: 5 (f) Correct: 120, incorrect: 16
Figure 5:Results of LEHF matching.

i 2 > —

4.2 Experimental results of SLAM system
4.2.1 Synthetic data experiments

We evaluated our SLAM system by using synthetic data. We built a simple synthetic er
ronment that is shown in the leftimage of F&. Then 447 sequential images were generate
with perfectly known camera poses. In this experiment, the fiducial marker of which size
10cmx 10cmwas used for initialization. After 153th frame, the fiducial marker disappeare
as shown in the right image of Figs and the camera pose was estimated by using onl
mapped 3D line segments. Moreover, we compared our SLAM system with the stand
line-based SLAM which did not use LEHF for tracking in mapping and for establishing 2L
3D correspondences. The standard line-based SLAM used nearest neighbor (NN) searc
searched the nearest line segment in the image space as existing line-based SLAM met
The other methods (line segment detection, camera pose estimation, etc.) are compl
same as our SLAM system. The results are shown in Fig.In our system, when the

number of 2D-3D correspondences are too small or the camera move distance betwee
estimated camera pose and the previous camera pose is too long, the system assume
the the camera pose estimation failed in order to prevent updating by bad parameters. In
frames, the standard NN method failed to estimate for 65 frames whereas our SLAM sys
failed to estimate for only 7 frames. We calculated the root mean squared error with gro
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truth for each graph except failed frames and we show them in TabAs shown in the
table, the results of our SLAM system using LEHF are more accurate than the standard N

method.
e e
0w -
Figure 6:Constructed synthetic environment.
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Figure 7:Comparison of the ground truth and our SLAM and the standard NN method.

400

Number of frames Number of frames

Rot. X (deg) Rot. Y (deg) Rot. Z (deg)
Proposed method 2.03 0.24 0.73
Standard NN method 2.53 0.43 1.40
Trans. X (mm)| Trans. Y (mm)| Trans. Z (mm)
Proposed method 0.85 1.12 3.96
Standard NN method 2.93 1.57 7.62
Table 1:RMSE between the estimated values and ground truth.

4.2.2 Real data experiments

In this experiment, we captured 64@80 images from a web camera(Logicool Webcam Pro
9000) and tested our SLAM system on a desktop PC (CPU:Intel(R) Core(TM) i3 CPU 3.0
GHz, Memory: 2.92 GB). Fig.8 shows mapped 3D line segments and estimated camere
poses. Our SLAM starts with a fiducial marker, which is shown in the first image of Fig.
9. In Fig. 9, green line segments are inlier line segments and red line segments are outli
line segments. Some augmented reality scenes are shown if@-ighe time required to
process the tasks in Fi@ is plotted in Fig.11. The mean processing time of 1087 frames
was 87.78ms and mean fps was 11.39fps.
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Figure 9:Results of our SLAM system in a desktop environment.
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Figure 11:Processing time of our SLAM system.

5 Conclusion

We have presented a real-time line-based SLAM system that uses a line descriptor c:
a LEHF. We showed how our SLAM system can be used in a small desktop environm
By using LEHF, 2D-3D correspondences are established correctly and the camera pose
robustly estimated as shown in the experimental results. Also, newly detected line segm
are correctly tracked between frames in mapping. The use of line segments as landrr
provides robust detection with respect to large viewpoint changes and partial occlusion.
SLAM system was evaluated by synthetic data and demonstrated for AR in a desktop €
ronment.
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