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Abstract

Recent progress has been made on sparse dictionaries for the Bag-of-Visual-Words
(BOVW) approach to object recognition and scene categorization. In particular, jointly
encoded words have been shown to greatly enhance retrieval and categorization perfor-
mance by both improving dictionary sparsity, which impacts efficiency of retrieval, and
improving the selectivity of categorization. In this paper, we suggest and evaluate dif-
ferent functions for the “soft-pairing” of words, whereby the likelihood of pairing is
influenced by proximity and scale of putative word pairs. The methods are evaluated in
both the Caltech-101 database and the Pascal VOC 2007 and 2011 databases. The re-
sults are compared against spatial pyramids using BOVW descriptions, standard BOVW
approaches, and across different parameter values of pairing functions. We also com-
pare dense and keypoint-based approaches in this context. One conclusion is that word
pairing provides a means towards attaining the performance of much larger dictionary
sizes without the computational effort of clustering. This lends it to situations where the
dictionaries must be frequently relearned, or where image statistics frequently change.

1 Introduction

Many modern approaches to vision problems, such as object recognition and categorization,
are based on a series of well-defined processing stages which produce image representations
that support the task at hand. For categorization or object recognition, such implementations
typically involve keypoint detection or dense sampling [4]. Commonly used keypoints de-
tectors are the Harris and Hessian multiscale [11], MSER [10] and DoG [9]. These reduce
the dense grid to a sparse representation, based around the keypoint locations and scales,
yielding highly scalable performance. Recent research has shown that dense sampling can
drastically increase the recognition performance through the inclusion of sparse coding and
pooling strategies (e.g. max pooling) [1, 15].

Several techniques can be used to bind mid-level descriptor-based features into a com-
pact representation whilst encoding spatial information. The methods for doing this include
the well known spatial pyramids [6]. Learning networks using pairwise potentials between
edge features [7] and other higher-order spatial features [16] can also be employed. Spa-
tial pyramids provide a description of relatively coarse spatial relationships, producing good
recognition rates [1, 6, 15]. Geometric relationships can also be encoded by approaches
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which hypothesize a fixed number of features (parts). Specifically, part-based models have
shown that fixed numbers of descriptor-based components can be a powerful representation
tool for object detection applications (see, for example, Felzenszwalb et al. [5]). These mod-
els have been tested in a variety of different arrangements by Crandall et al. [2]. Typical dis-
advantages of such models include having a fixed numbers of parts where a computationally
expensive search assigns parts to locations and sets a hypothesised center for the model. Yet
another approach binds descriptors into high-order features yielding much improved recog-
nition performance compared to an ungrouped bag of features approach [16, 17]. The lat-
ter approach attempts to encode spatial relationships using relative features’ distances (cor-
respondence transform). Co-occurrences of these high-order features are mapped into an
offset space [16], where occurrence counts are assigned to those features which satisfy pre-
defined distance criteria. In this research, we focus on whether a selection mechanism can
reduce the dictionary size of such high-order features. The transition from visual words to
ond 3rd -k order grouping increases the computational complexity of BOVW methods
by a factor of N¥, where N is the size of the visual word dictionary.

In this work, we first propose the use of kernels to create small-sized dictionaries of
paired words utilizing categorical opponency to select such pairs. Secondly, we examine
how word pairs in close relative proximity can be turned into a scalable indexing scheme,
and how different coupling functions affect classification performance. Thirdly, we propose
a method whereby coupling kernels are applied, suggesting decision functions that can detect
pair occurrences online.

2  Coupling Visual Words

This work is partly inspired by evidence that binding low-level features can improve recogni-
tion rates and pose invariance. Additional evidence has been found by Leorndeanu, et al. [7]
who used contour-like representations and Conditional Random Fields (CRFs) as a conveyor
of spatial information, yielding improved classification. In addition, findings by Zhang, et
al. [16] indicate that 2"? order features produce high performance gains compared to simple
Bag-Of-Visual-Word approaches. Higher orders than the second, especially for the case in
which an SVM is used for final classification, show almost no further improvement [16].
Thus, this work is focussed on 2@ order features, or visual word pairs. Note that this is dif-
ferent to concatenations of descriptor pairs, which would in principle need to be clustered in a
higher (double) dimensional-space. There is no work in the literature on the exact size of pair
dictionaries used by researchers, or of the effect on performance. This motivated us to ex-
plore small codebooks of pairs with discriminative power that is, at least in principle, equal to
that of a full paired dictionary of order N2. For instance, a codebook of 500 visual words can
produce 500> = 250,000 pair combinations, but some of these are repeated. Assuming sym-
metry in the pairs, this yields a paired combination of N(N — 1)/2 = 124,750 unique pairs,
or including the case that pairs with the same word IDs are allowed, N(N +1)/2 = 125,250
combinations can be generated. This is an inconveniently large size for a dictionary pro-
duced by clustering alone, which discourages implementation when the dictionary needs to
be regenerated in on-line use. Thus, a key question is: to what extent can word pairing pro-
duce an effectively much greater dictionary size, and provide the performance gains usually
associated with large vocabularies of single-word dictionaries [12] ?
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2.1 A Dictionary of Paired Visual Words

Grouping visual words of a small dictionary size can exponentially increase the effective size
of a visual vocabulary. Even paired words can yield numerous combinations, depending on
the size of the initial codebook. Among these numerous pairs, a subset can exist that makes
the pairing task more efficient. In addition, it is assumed that specific pairs are very unique
to each class and others are non-informative. Thus, a pair mining method is described to
select those pairs from the training set given the ground truth of the object classes.

We can treat pairing as estimating the joint occurrence of certain words, w; Nw;, and
consider the probability that these words occur jointly, P(w;w;). Bayes’ Theorem suggests
that P(w; Nw;) = P(w;) - P(wj|w;). However, we found it intuitive to use a kernelized form,
K}, which incorporates a term similar to a prior on individual word occurrence:

Kh(wi,Wj)ZP(Wj|W,‘)-Gi (1)

and where G; = —log(P(w;)) provides a weighting similar to an inverse-document frequency
[13]. The kernelized expression (1) provides a statistical means to monitor specific visual
words down-weighted by the G; term as introduced by Sivic, et al. [13]. P(w;|w;) refers
to the probability that codebook member w; has occurred, given that the word w; has oc-
curred in the image. We found that by stopping the bins corresponding to w; in estimating
P(wj|w;) reduces bias in (efficiently) estimating the co-occurrence of other words in the im-
age. Specifically, the conditional histogram of visual words is constructed by removing the
candidate w; word-bin from the histogram. This procedure favours the pairing of words with
those other than itself. The conditional word estimation is performed per object, then the
kernels are averaged over the same class and finally L; normalized, arranged according to
object classes.
We now introduce the categorization opponency kernel, Ko,

mcath(wi,wj,c,)
13

2

Kop(wi,wj) = max | Ky, (wi,wj,cf) < max K, (wi,wj,c;) |
e Ct

¢; represents the object label assigned to each normalized kernel. Presumably, if a histogram
of words can provide a rough discrimination among categories, then a pair might exist en-
hancing this behaviour. Equation (2) captures our approach to detect which pairs have high
dominance within a specific class. Searching along the categories ¢, € {1, ..., C} the max-
imum of a kernel entry is divided by the second maximum, found in another category. This
forms a ratio such that the higher the value of the RHS of Equation (2), the higher the op-
ponency of this class against the others. This means that for a given combination of visual
words, the detected pair tends to be unique to the examined class.

2.2 Decision Functions for Coupling

In the training and testing phase, histograms of pair occurrences are derived based on the
pair codebook described in Section 2.1. Zhang, et al. [16] used a correspondence transform
to build histograms of co-occurrences over predefined regions. However, their approach did
not deal with the size variation of objects. For example, if salient patches on one object
were to occur with a size such that multiple patches fall into the allowed offset space, a
different result would be obtained if the object were scaled such that the relative distance
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Figure 1: Starting from left to right: (a) illustrates how a kernel may be constructed using
conditional histograms. (b) This figure shows the concept of first and second maxima. Each
colour represents a different pair, where the size of the coloured/shaded blobs illustrates the
1*" and 2" maxima. (c) Once a candidate category is selected, we focus on the maximum
votes that belong to this category. Finally, the ratios of these pairs are selected from highest
to lowest.

W3 Wg Wi

between its salient patches was increased, despite the approximate scale-invariance of many
descriptors. An alternative approach was used by H. Ling, et al. [8], in which cumulative
proximity distributions were employed. Both approaches lack the inclusion of scale-relative
distances. So, the distances between descriptor pairs can vary as both the pose and size of
the object change. Visual words, especially at the descriptor level, typically only convey
information from a local region. However, the rough scale estimate provided by many of
the approaches to building scale-invariant descriptors can be interpreted as the radius of a
patch descriptor, and this should scale with patch zooms. A hypothesis can be made that
these keypoint-associated scale estimates may provide reasonable scale predictions as one
zooms into an object. In addition, the relative distances of visual words in space is trivially
obtained. We thus propose that the coupling functions should be based on the relative scale
coverage that two visual words have between them. For instance, two words might slightly
overlap each other, suggesting that the gradient fields encoded by both also jointly encode an
object contour. We therefore define coupling functions that relative distance to the effective
descriptor radii. This transforms the relative overlap in image space into a probability of two
co-occurring words forming a proximal pair.

An abstracted (“distilled”) feature ¢VE';) = (Xn,¥n, On,w;) is defined by its (x,,y,) image
location estimated by a detector while n represents the instance of a single word w; in the
image. The parameter o, is the scale estimate for the keypoint, and may be thought of as
representing the descriptor radius. The w; entry represents the index of the assigned visual

word. Next, define r = o, + 0,, as the summation of radii of two different features d)fvn/,)

and ¢v(vr,-n)- Finally, the parameter d = \/ (xn — Xm)% + (yu — ym)? represents the Euclidean
distance between candidate features. Often, in on-line image pair assignment, several co-
occurrences ¢VE,’;) N ¢v(v’:l) of the same words w; and w; may be found. A kernel of visual
word co-occurrences is constructed in which the first dimension corresponds to the number
of times word w; is found (N) and the second dimension, the number of times word w; is
found (M). These are used in the construction of the word pairing histogram, B (P), defined
by:

Q
0 (p) (n) (m) . .
B = Z nr‘rrlneglKprM(q)Wj =wj, 0, =w;), with Q =min(M,N). 3)
m|n=1 -
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Figure 2: This figure shows two word co-occurrences before pairing. The size of the circles
indicates the scale at those locations, and the colour represents a unique word ID. The pair
detection is performed by flagging the word IDs of a single pair. At this point, several word
co-occurrences might happen. The kernel on the right of the figure, as defined in Equation
(3) arranges the co-occurrences and selects the maximum values along the largest dimension.
The remainders are added as probabilistic votes into a histogram bin which represents the
examined pair.

A maximization operation is applied along the larger dimension. This approach was found
to yield the best suited soft-assigned pairs which, in turn, will be added as pair occurrences

into histogram bins B(?). The kernel mapping KIEIPX)M is obtained by applying one of three
pairwise coupling functions, Si,S>,S53, independently; in Section (3.1) we compare the dif-
ferent coupling criteria to assess which one yields the best performance. It is assumed that a
Support Vector Machine (SVM) classifier can learn a separating hyperplane that splits these
classes based on B,. The first coupling function is defined as:

SiBloy, N190) = )

Equation (4) is merely the Euclidean distance between words. The effect of using this dis-
tance is to pair words that are adjacent to each other, irrespective of scale. The distances are
accumulated in the corresponding pair bin. The votes can capture trends that might exist in
distances between word pairs. The second function is a scale-relative distance:

$2(7,l0y o) = max {0, = 0

The max() operation in Equation (5) rejects negative outputs from the @ term. Occa-
sionally, closely adjacent words might produce negative values. We wish to penalise such
occurrences, based on the idea that two distinct words with large overlap provide little new
information. Finally, we have a sigmoidal distance:

() () 1
S3(Ppl9y, NGy, ) = = (6)

+e

Equation (6) expresses the likelihood that the pairs P,, given that at least one ¢V(V'j) n (])v(vrl")
occurrence happened. One advantage of using this function is that its output ranges always
in (0, 1), which in turn reduces the dynamic range of the elements in 53,,. The raised term in
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the exponent represents the relative overlap of the two words. Also, the o parameter affects
the slope of the sigmoid curves; the higher the o value, the further away in image space
co-occurrences are paired.

(a) (b)

Figure 3: (a) illustrates a word pair comprised of two words w4 and wg. The associated key-
point information captures the effective descriptor (spatial) radius (o4 and o), and relative
Euclidean distance (d4p), which is used to derive the paired words. (b) illustrates the single
word pair occurring 4 times; multiple occurrences such as this are used in Equation (3).

3 Experiments

The evaluation of the proposed approach starts with the size of a pair dictionary. In our
experiments to determine the effect of dictionary size, we used the SIFT descriptor from
VLFEAT [14] with both the built in detector and grid-based sampling. 128-dimensional
SIFT descriptors were used, and for the case of the dense sampling, the patch size was
16 x 16 with 8-pixel spacing. For the first experiment, the single-word codebook was set to
500. The number of codewords in the paired codebook was then varied in size between 500
to just below 4000. One of the most important effects is on the variance of the classification
accuracy with partial training sets. To measure this, a subset of training images (600 per
class), was randomly sampled from the full Pascal VOC 2011 training database and used to
learn a classification model with a linear SVM classifier [3]. We used the Pascal VOC 2011
set because it contains slighter greater pose changes across many of the classes. A sample
of validation images was drawn (600 per class) and accuracy was tested. By repeating this
process 10 times per class, an estimate of the standard deviation is obtained. We found
that for dictionary sizes below 4000, the standard deviation is large, becoming greater as
the number of word pairs is decreased. The standard deviation rose to as much as 20%,
and this could significantly affect real-world performance. Details of the classifier training
are as follows: half of the kernel entries were randomly selected positive examples of the
training class and the other half were randomly selected negative examples. The overall size
of the kernel is 600 x 600 entries balanced into positive and negatives which helps to obtain
realistic accuracy estimates. Having determined that paired codebook sizes of beyond 4000
lead to standard deviations of less than 2.5%, we selected a paired size of 5000 for further
experiments.

3.1 Evaluation of Coupling Functions

The performance of Equations (4), (5) and (6) is evaluated on the Pascal VOC 2011 as well.
The same experimental setup, described above, is applied to assess which pairing kernels
(S1, S7 or S3) provide better performance.
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| Si1 (4 | Equation (5)S, | Equation (6) S
Average Accuracy H 63.92% ‘ 65.93% ‘ 66.42%

Table 1: This table clearly shows that the best performance is obtained by S3 (o = 1).

Classification Performance Gain

[ I T i L
0051152 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 101051111512
Variation of sigmoid slope o

Figure 4: This is the only experiment in which the o parameter of Equation (6) was varied.
A red line sets the baseline performance of the sigmoid function where the blue curve shows
which values of ¢ increase or reduce the accuracy. This test has been performed on the class
“Cow” of Pascal VOC 2011. There is a clear trend for the specific range of @ = (8,10.5)
which can yield better performance for this class. The nature of this effect is class specific.

3.2 Pascal VOC 2011

In this test, we compare the performance of the best performing coupling kernel (S3) in all
categories of the Pascal VOC 2011 dataset against the performance of spatial pyramids (Ta-
ble 2), both keypoint and grid-based. The size of the histogram descriptors was 10500, using
three levels (0,1, and 2) [6]. The best performing method is shown in each column in bold.
In Table 3, we summarise the average performance and standard deviation of the runs across

Average Accuracy Aeroplane | Bicycle | Bird Boat Bottle Bus Car Cat | Chair Cow
Keypoint-Based Pyramids (10500) 70.98 53.57 | 55.46 59.27 54.60 | 61.58 | 60.83 | 57.06 | 56.03 49.90
Grid-Based Pyramids (10500) 79.61 64.01 | 64.56 70.94 58.5 79.78 | 69.75 | 67.83 | 68.45 6243
Keypoint-Based Pairs (5000) 717.06 6538 | 70.06 68.30 59.06 | 73.60 | 61.23 | 66.76 | 68.06 69.01
Grid-Based Pairs (5000) 80.80 7091 | 65.35 71.16 64.48 | 79.23 | 71.43 | 70.85 | 66.43 68.61

D-Table Dog Horse | Motorbike | Person | P-Plant | Sheep | Sofa | Train | Tvmonitor
Keypoint-Based Pyramids(10500) 52.45 57.81 54.61 54.25 5391 50.27 | 58.53 | 55.60 | 52.01 58.00

Grid-Based Pyramids(10500) 67.82 64.11 | 63.83 66.45 59.66 | 61.24 | 70.94 | 66.80 | 70.23 73.45
Keypoint-Based Pairs(5000) 70.70 64.70 | 5530 65.63 65.26 | 59.57 | 65.58 | 63.32 | 67.41 72.35
Grid-Based Pairs(5000) 69.08 65.68 | 66.18 65.44 64.83 | 61.64 | 74.02 | 66.50 | 73.80 74.22

Table 2: Detailed performance evaluation on Pascal VOC 2011.

the whole database when either pairs or single words are used, both with keypoint and grid-
based approaches. It is clear that the pairs also lend themselves to grid-based approaches,
resulting in the highest performance in our tests.
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| Pyramids (10500) | Pairs (5000)
Keypoint-Based 56.341 1 63 66.4215 o7
Grid-Based 67.5212.04 69.5312.03
Table 3: Summary of table (2). These are the accuracies averaged over all classes, with
standard deviation reflecting variability across all classes.

3.3 Caltech101

In these experiments, we test performance in a larger categorization database using keypoints
and grid-based sampling with either a pair approach or a pyramid approach. In this case, we
train on 30 examples and test on 50 randomly selected samples. The single-word dictionary
size is again 500, with the paired-word dictionary being 5000. A linear SVM was used
as the classifier. In the case that a category contains less than 50 samples, we test on the
remaining number of samples. Figure 5 shows the classification accuracy. The word pairing
significantly enhances results, which are summarised in Table (4).

D spatial Pyramid Confidence
— — 5 mids (10500)

(I Fair Confidence
90F — — Pairs (5000)

3
g
8
E ,rj/
"4
o WA
7 W

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Caltech 101 Categories Caltech 101 Categories

() (b)
Figure 5: In (a) a comparison of spatial pyramids (blue) and pair (red) with descriptors
produced by keypoint locations. (b) The same comparison is illustrated, but this time a grid
sampling approach has been implemented. In both (a) and (b) the “confidence” represents
the unit-standard deviation envelope estimated over 10 runs.

| Pyramids (10500) | Pairs (5000)

Keypoint-Based 52.3041.28 71.0042.00
Grid-Based 60.16:*:156 73.8812.10
Table 4: Average accuracies per method for Caltech 101.

3.4 Pascal VOC 2007

We included a test on the Pascal 2007 database using a larger single codebook dictionary
containing 4000 words. This test shows better performance in the spatial pyramid, and
a comparable test of word pairing performance. The pyramid representation consisted of
84000-element descriptors, whilst 65000 word pairs were used. This was chosen as being
roughly equivalent in performance improvement to the 5000 paired number relative to a 500
single codeword dictionary.
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Average Accuracy Aeroplane | Bicycle | Bird Boat Bottle Bus Car Cat | Chair Cow
Grid-Based Pyramids (84000) 73.65 60.92 | 60.19 71.22 61.60 | 6094 | 65.13 | 57.10 | 66.65 57.79
Grid-Based Pairs (65000) 78.50 66.23 | 64.48 74.79 61.48 | 73.33 | 74.08 | 62.35 | 70.06 70.31

D-Table Dog Horse | Motorbike | Person | P-Plant | Sheep | Sofa | Train | Tvmonitor
Grid-Based Pyramids(84000) 68.10 58.38 | 60.40 56.98 60.76 | 57.12 | 62.93 | 60.06 | 62.47 61.94
Grid-Based Pairs(65000) 62.92 58.45 | 63.92 64.21 61.05 | 64.59 | 68.50 | 61.99 | 68.80 66.85

Table 5: Performance on Pascal VOC 2007. Overall, the pair approach achieves 66.84%
against 62.21% for the spatial pyramids.

4 Conclusions and Future Work

The aim of this work was to a) evaluate the effect of different sizes of word-pairing dictio-
nary well below that theoretically provided by the approximate upper number of word-pair
combinations, where the subset of pairs is chosen by category opponency b) to investigate
different pairing functions and c) to construct a pair histogram representation efficiently, as
the visual words and locations are produced for a query image. In addition to proposing
and describing the approach, we investigated the performance of classification in a number
of standard datasets, including Pascal VOC 2007, Pascal VOC 2011 and the Caltech 101
database.

4.1 Implications for Classification Performance

Category opponency makes use of labelled categories to select word pairs that are more
suitable for category discrimination. The results show that the use of category opponency
can decrease the number of word-pairs, that are actually employed, reducing those from a
theoretical vocabulary of at most N(N + 1) /2 to a size that is tunable by the user. This allows
storage space to be reduced in representing histograms of word pairs. The results show that
the number of words can be flexibly chosen, but very small word-pair combinations can lead
to high variance (=low reproducibility) in learning performance.

4.2 Coupling Functions

The coupling functions assign a weight to each paired histogram bin based on proximity of
two paired words and the scale of the words. We investigated three types of pairing functions,
S1, S2 and S3. The results were best using S3, a sigmoidal function with one parameter which
was fixed for all but one experiment.

4.3 Overall Performance

Empirically, the pairs have the ability to improve keypoint performance to the point that it is
close to that of grid-based methods. This is an important saving: rather a than dense sam-
pling of descriptors, or very large vocabulary sizes (though expensive clustering with a large
number of cluster centres), word pairs allow a computationally efficient and flexible way of
using the same single-word codebook to effectively achieve much higher vocabulary sizes.
The fact that combinations of word pairs can be selected to boost categorization performance
helps keep the vocabulary size low, yet with good performance.
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4.4 Future Work

In future work, we intend to merge pyramids with word pairs to investigate whether there are
further improvements in performance. In addition, recent approaches to sparse coding with
max pooling [1] has shown major performance gains with respect to hard-word assignment.
This encourages us to explore sparse coding on structured dictionaries such as in our case
where two words form a pair: there is a hidden structure that we have not utilized yet of
hierarchical information derived from our approach. For example, if two words form a pair
then this can be treated as a rough tree structure comprised of a root node (pair) and two
children (two words).
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