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Abstract

Hierarchical methods have been widely explored for object recognition, which is a
critical component of scene understanding. However, few existing works are able to
model the contextual information (e.g., objects co-occurrence) explicitly within a sin-
gle coherent framework for scene understanding. Towards this goal, in this paper we
propose a novel three-level (superpixel level, object level and scene level) hierarchical
model to address the scene categorization problem. Our proposed model is a coher-
ent probabilistic graphical model that captures the object co-occurrence information for
scene understanding with a probabilistic chain structure. The efficacy of the proposed
model is demonstrated by conducting experiments on the LabelMe dataset.

1 Introduction
The task of scene recognition or scene understanding usually automatically labels an image
with a set of semantic categories such as office, street, coast and etc. It is different from
the object categorization problem, since the latter focuses on local information that reflects
the presence and absence of objects, while the former requires global information that de-
scribes the whole image. Scene understanding is a fundamental computer vision task as it
can provide contextual information to guide other processes such as object recognition [2],
and has high potentials to improve the performance of computer vision application systems
such as browsing (natural grouping of images based only on low-level features) and retrieval
(filtering images in archives based on contents).

Historically, there is a controversy between cognitive psychology and computer vision on
the task of scene recognition, the main source of which is about achieving scene recognition
using low-level features to directly capture the gist of a scene versus using intermediate
semantic representations [4]. Following this controversy, two main directions have been
explored on this task. One attempts to use supervised classifiers that directly operate on low-
level image features such as color, texture, and shape [3, 20]. The weakness is that a low-level
representation is difficult to be generalized to some scene categories such as indoor scenes,
as discussed in [14]. The other direction ventures to bridge the gap between low-level image
properties and the semantic content of a scene using intermediate semantic representations
that can be obtained by processes such as segmentation and object recognition. Most recent
works have put effort on semantic models to tackle the scene recognition problem [1, 7, 9,
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Figure 1: The work flow of our proposed system. First, one performs segmentation on
the input image. Second, features are extracted from each superpixel. Third, one assigns
semantic labels to each superpixel based on the feature extracted in the 2nd step. (Note that
in this step, what our unsupervised model assigns to a region is an object index such as ’A’ or
’B’ and it is not aware what A refers to. For the sake of understanding, we replace the index
to its corresponding label manually in the figure.) Finally, a scene-level label is associated
to this image. In the example, bedroom is most likely to contain all present objects.

10]. It is a currently well accepted view that in order to understand the context of a complex
scene, one needs first to recognize the objects and then in turn recognize the category of the
scene [7, 10]. Moreover, L. Li et al. pointed out in [8] that there is a discrepancy between
the image representations and the image recognition goal; with lower-level features, more
work needs to be done to achieve higher-level recognition goals. Thus capturing high-level
representations is important for the target scene recognition task. Although the high-level
contextual information has been proved useful on numerous higher-level classification tasks
in recent years, we notice that few existing scene recognition models in the literature are
able to encode contextual information such as scene layout, background class, and object
co-occurrences. We thus aim to employ the object-level contexts in a generative probabilistic
model which does not require tedious object annotations over the training data.

In this work, we propose a novel three-level (superpixel level, object level and scene
level) generative hierarchical model for scene understanding, which captures the high-level
contextual information expressed in form of object co-occurrences. Specifically, it encodes
the correlation of object classes using a probabilistic chain structure over the object class
assignment variables in each image. Different from previous works such as [10], the pro-
posed model only requires the images as inputs and it can automatically extract information
at different levels within a generative probabilistic graphical model framework. Figure 1
illustrates the work flow of our proposed system which involves three stages: (1) segmen-
tation, (2) object recognition, and (3) scene classification. We integrate the last two stages
into a coherent probabilistic graphical model. The object-level annotation under our model
is accomplished automatically during training, and thus the proposed model is unsupervised
at this level. This is based on an assumption that recognizing explicit object categories is
unimportant as long as one can build the association between the objects from the same cate-
gory [13]. For example, after seeing a car passing by for the first time, the information from
this encounter is critical to determine whether a newly observed object belongs to the same
car category even if we are not aware these objects are named as car. The proposed model
indexes each object class with a unique integer and ensures that the appearance-wise similar
objects share the same class, instead of associating each object class with a fixed human
defined concept. Unsupervised learning at the object-level then is expected to automatically
capture useful concepts for each object class. Moreover, an ensemble prediction strategy
based on training multiple models with random restarts is employed to further improve the
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model performance. The efficacy of the proposed model is demonstrated by experiments
conducted over the LabelMe dataset.

The remainder of the paper is organized as follows. In Section 2, we introduce the related
work. In Section 3, we present the proposed hierarchical model. We report the experiments
and results in Section 4 and then conclude this paper in Section 5.

2 Related Work
As we mentioned in the previous section, the literature of scene recognition can be divided
into two groups, following two directions, low-level modeling and semantic modeling, re-
spectively. A comprehensive review on this topic can be found in [2]. The low-level mod-
eling methods assume the categories of a scene can be directly determined by the low-level
features such as color and texture properties of the image. For example, horizontal edges
have been frequently observed in natural scenes (mountain, coast, and forest), and vertical
edges appear often in urban scenes (street and building). Some low-level modeling meth-
ods work with the features extracted from the whole image. For example, [21] proposes a
hierarchical structure that discriminates many scene classes effectively merely using low-
level image features. [17] presents a new type of features, Combined Multi-Visual Features,
which integrate color, texture, and shape features altogether. A few other methods split the
image into a set of subregions, where features are extracted independently. For example,
[16] develops a framework to combine multiple SVM classifiers in a belief network, where
the color and texture features are extracted from image sub-regions and classified separately.

The semantic modeling methods take scene contents such as presence or absence of ob-
jects as cues for improving the classification performance obtained using low-level features
alone. Most of recent work in this direction focuses on dealing with the gap between the
image representations and the image recognition goals. A few works, [6, 18, 19, 22], uti-
lize the correlations between the statistics of low-level features across images that contain
one object, or the whole object category. A high-level representation named Object Bank is
presented in [7] for scene classification, which encodes the semantic and spatial information
of the objects within an image. Specifically, in an object bank representation, an image is
represented as a collection of scale-invariant response-maps of a large number of pre-trained
generic object detectors. Although representing the state-of-the-art for the scene recognition
task, this approach is a supervised method and requires object annotations to be provided to
train the object detectors. [1, 9] propose some hierarchical probabilistic methods that use
unsupervised techniques with bag-of-words schemes to obtain relevant intermediate repre-
sentations. [10] develops a graphical model framework to perform three visual recognition
tasks: annotation, segmentation, and classification. This graphical model however requires
additional textual information as inputs.

Following the path of seeking a proper intermediate representation, we develop a hierar-
chical probabilistic graphical model in this work to model the high-level image representa-
tions for scene recognition and understanding. Different from [7], our approach is unsuper-
vised and can avoid the expensive and time-consuming object annotation process required for
training the object detectors. Unlike [10], our model does not require pre-collected relevant
textual information. We assume that only the number of object categories is known pre-hand
without involving human defined object concepts. In particular, our model takes the high-
level contextual information in form of object co-occurrence into account, which hasn’t been
captured by previous probabilistic hierarchical methods developed in the literature.
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3 Proposed Method

In this section, we present a hierarchical probabilistic graphical model that employs the con-
textual information to assist scene classification. This model, shown in Figure 2, integrates
both low-level features and high-level representations for scene understanding. In our set-
ting, the total number of object classes for the whole image set is assumed to be known. But
as an unsupervised model, it does not require the object annotations to be provided. Instead,
object annotation will be accomplished implicitly as an intermediate result in our approach.
In this model, object classes are not pre-associated with fixed human defined concepts (e.g.
desk, computer, and sky), but are simply represented using consecutive index integers from
1 to the number of object classes, which is 30 in our experiments.

Figure 2: The proposed model. Nodes denote random variables and edges indicate depen-
dencies. The variables at the bottom-right corner of each box denote the numbers of replica-
tions. The box indexed by D represents a single image in the image set of size D. The box
indexed by Nr denotes the visual information of the image. Nc, No, NF , and Np denote the
number of different scenes, objects, region features, and patches respectively. α,β ,γ,η are
the parameters of the distributions associated with the variables. We omitted the distribution
hyperparameters for clarity’s sake.

3.1 Model Components

The proposed model integrates both low-level representations and intermediate semantic
modeling to explain an image from three different levels: the superpixel level, the object
level and the scene level.

Low-Level Representation The bag of words methodology is adopted to represent an
image at a low level. First, we segment the input image into multiple superpixels. The
segmentation method used in this study is from [5]. Second, local descriptors over these
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superpixels are computed. Similar to [10], for each region we extract NF = 4 types of fea-
tures, where F={shape, color, location, texture}, which are represented as the tR nodes in
our model. We use the shape and location features described in [12]. The color features
are simply computed from histograms and the texture features are the average responses of
filter-banks in each superpixel/region. Moreover, a set of patches can be obtained by dividing
the image into blocks. SIFT [11] features are extracted from these patches and the tX nodes
in the model denote the vector quantized SIFT features of the patch locating in a particular
region. Third, the produced descriptors are then quantized to form the visual vocabulary.
Codebooks of the shape, color, location and texture features have the sizes of 100, 30, 50,
and 150, respectively. The codebook of the SIFT feature has 500 code words. Finally, we
count the occurrences of each specific code word in the vocabulary in order to build the
histograms of the code words.

Intermediate Semantic Modeling In order to bridge the gap between the low-level rep-
resentation and the high-level classification goal, we design an object-level structure over
the superpixel-layer features. As Figure 2 shows, each region is assigned an object label
tO that comes from one of the object classes indexed from O1 to ONo . Moreover, objects
appearing in a scene are not independent to each other, but correlated. We encode the object
correlation information using a chain structure over the Oi nodes, i = 1,2, . . . ,ONo , in Figure
2. The rationale behind this design is to capture the correlation information between object
categories without inducing more complicated inference problems. As demonstrated in the
figure, the resulting joint distribution of a given scene with class C, the appearances of object
classes, O1, O2, . . ., On, the objects tO, the region features tR, and the image patch features
tX can be expressed as:

P(C,O1,O2, . . . ,On, tO, tR, tX|α,β ,γ,η) = P(C) ·P(O1|C,η1) ·
No

∏
i=2

P(Oi|Oi−1,C,ηi)

×
Nr

∏
l=1

(P(tOl |O1,O2, . . . ,On,γ) ·
NF

∏
k=1

p(tRlk|tOl ,αk) ·
Np

∏
m=1

P(tXlm|tOl ,β ))

(1)

The top-down generative process of this model can be outlined in the following way.
Given the scene class C, the probability of an object class indicator variable is governed by
a binomial distribution. Specifically, for each image, we sample the object class indicator
variable as Oi ∼ Bino(ηi|C,Oi−1). Then, given the object configuration of the current image,
O1,O2, . . . ,ONo , the probability of the object variable tO of each image region has a multino-
mial distribution, tO ∼Mult(γ|O1,O2, . . . ,On). Next for each image region, we sample its
image appearance features from a multinomial distribution tRi ∼Mult(αi|tO) for i ∈ F , and
sample its patches in a similar way, tX ∼Mult(β |tO). We use hyperparameters {π fi},πx,πo
to define the Dirichlet distributions of the model parameters {αi},β ,γ respectively and use
{θi} to define the Beta distributions of {ηi}.

3.2 Automatic Model Learning

To learn the model parameters automatically, we derive a collapsed Gibbs sampling algo-
rithm. For each image we sample the latent variables O j ∈ {0,1},∀ j and tOs.

For the dth image, given all other variables, the conditional distribution of each latent
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variable Od j can be computed as

P(Od j|Cd ,Od1,Od2, . . . ,OdNo , tOd) ∝ P(tOd |Od1, . . . ,OdNo) ·P(Od1|Cd) ·
No

∏
i=2

P(Odi|Cd ,Odi−1).

(2)
The first term of this equation can be calculated by:

P(tOd |Od1, . . . ,OdNo) =
Nr

∏
n=1

P(tOdn|Od1, . . . ,OdNo) (3)

where tOdn denotes the object class assignment for the nth region in the dth image. The
consecutive terms can be obtained by

P(Od j = t j|Od j−1 = t j−1,Cd = c) =
nct jt j−1,−d +θ

t j
j

∑t j nct jt j−1,−d +θ j
(4)

where t j (or t j−1) takes an indicator value of 0 or 1. t j = 1 indicates the jth object class
presents in the dth image and t j = 0 indicates its absence. The value nct jt j−1,−d denotes
the number of times that the setting {C = c,O j = t j,O j−1 = t j−1} appears in the whole
image set excluding the dth image. θ j are the hyperparameters for η j ∼ Beta(θ 1

j ,θ
0
j ) where

θ j = θ 0
j +θ 1

j . We integrate the η j out according to the conjugacy of the beta distribution and
the binomial distribution.

Let tRdn and tXdn represent the sets of region features and patches of the nth region in
the dth image. Following the Markov property of variables tO, we analytically integrate out
parameters α , β , and γ . Then the posterior over the object variable tOdn can be described
as:

P(tOdn = o|tOdn,Od1, . . . ,OdNo , tRdn, tXdn) ∝ P(tOdn = o|tOdn,Od1, . . . ,OdNo)

×P(tRdn|tRdn, tOdn) ·P(tXdn|tXdn, tOdn)
(5)

where tOdn denotes all other tO variables except the tOdn. Similar explanations can be
applied on the notations tRdn and tXdn. The first term of this product can be easily calculated
in the following way:

P(tOdn = o|tOdn,Od1, . . . ,OdNo) =
P(tOdn = o, tOdn|Od1, . . . ,OdNo)

P(tOdn|Od1, . . . ,OdNo)

=
noOd1...OdNo ,−dn +πo

∑o′ no′Od1...OdNo ,−dn +Noπo

(6)

where the value noOd1...OdNo ,−dn denotes the number of appearances of the setting {tO =
o,O1 = Od1, . . . ,ONo = OdNo} excluding the nth region of the dth image. πo is the hyper-
parameter for γ ∼ Dir(πo). Using standard Dirichlet integral formulation, we can obtain the
last two terms:

P(tRdn|tRdn, tOdn = o) =
NF

∏
i=1

P(tRdni = fi|tRdni, tOdn = o)

=
NF

∏
i=1

no fi,−dn +π fi

∑ f ′i
no f ′i ,−dn +N fiπ fi

(7)
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where π fi is the hyperparameter for the symmetric Dirichlet distribution of αi; the value
no fi,−dn defines the number of occurrences for fi with o excluding the instances related to
dn.

P(tXdn|tXdn, tOdn = o) =
Γ(∑x′ nox′,−dn +Nxπx)

Πx′Γ(nox′,−dn +πx)
· Πx′Γ(nox′ +πx)

Γ(∑x′ nox′ +Nxπx)
(8)

where πx is the hyperparameter for β such that β ∼ Dir(πx). The value nox,−dn indicates the
number of occurrences for x with o excluding the instances related to dn.

3.3 Inference
With the trained model, we predict the most likely scene class for an image from the new test
image set. We use the visual components of the proposed model to compute the posteriori
probability of each scene class by integrating out the latent object variables, Os and tOs:

P(C = c|tR, tX) =
P(C = c, tR, tX)

P(tR, tX)

∝

Nr

∏
n=1

∑
{O1,O2,...,ONo}

(
P(O1,O2, . . . ,ONo |C = c)·

∑
o

P(tRn|tOn = o) ·P(tXn|tOn = o) ·P(tOn = o|O1, . . . ,ONo)
)

(9)

where the first summation is marginalizing over all possible configurations of objects under
the scene class c and the second one is marginalizing over all possible object assignments
under a particular configuration. The most likely scene class can then be determined as:

c∗ = argmax
c∈C

P(C = c|tR, tX) (10)

3.4 Ensemble Prediction
Same as many probabilistic graphical models developed for image modeling in the literature,
the presented model above can only be trained to reach local optimal solutions due to the
existence of many latent variables. In order to make the predictions more robust, instead of
training only one model, we train multiple models (we used 5 in our experiments) by random
restarts and ensemble them together in the inference phase. With ensemble prediction, the
predicted scene value for a test image is determined as the scene label voted by most models.

4 Experiments and Results
We evaluated our approach on the widely used LabelMe dataset [15], out of which we picked
10 scene categories that contain both outdoor and indoor scenes: bathroom, bedroom, air-
port, coast, corridor, livingroom, office, park, speech and street. Each category contains
70 ∼ 200 images. We selected 50 images from each category to form the training set and
kept the remaining images in the test set. We set the number of object categories as 30, i.e.,
No = 30, in our experiments.

Figure 3 presents a few examples of our experimental results on the test data. The re-
sults suggest that the automatic object annotation achieved in our model is helpful for scene
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(a) (b) (c) (d)
Figure 3: The scene recognition results. Column (a) are the original images; Column (b) are
the segmentation results; Column (c) are the object-level intermediate results; Column (d)
are the scene classification results.

classification even in the case that the image context can not be completely captured. For
example, in the third row of Figure 3, though only one object "computer" (reflected as a class
index in our model) is recognized, our system is able to correctly tell the image is "office"
since computers often appear in the "office" scene instead of other scenes. On the other hand,
the missing of some critical objects may lead to wrong scene classification. For example, in
the second row of Figure 3, the "sea" object is missed from the object level, and the predicted
scene label is different from the ground truth "coast", even the objects sky, tree, and floor, are
correctly detected. This however is a hard case even for human being. Nevertheless, overall
our automatic object recognition still positively contributes to the final scene classification
and leads to good prediction results.

To measure our prediction results, we compared our proposed model with three base-
line methods: (1) The state-of-the-art scene classification method using SVM Classifier and
Object Bank features (SVM+OB) [7]. The OB features are obtained by applying pretrained
object detectors on input images, and then SVM classifier is used for scene classification with
these features. From the set of well established object detectors [7], we manually picked 30
object detectors that are most closely related to the 10 scene categories of our dataset. Note
the object detectors used in this method are supervised trained on multiple datasets includ-
ing ESP, LabelMe, ImageNet, Flickr, etc. This method therefore obviously benefits from
both the large amount of labeled data and the prior knowledge on the LabelMe dataset, since
accurate object detections are critical for scene classification. We can take this method as
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Method Proposed Proposed w/o Ensemble Model w/o Chain OB+SVM
bathroom 0.765 0.604 0.565 0.938
bedroom 0.704 0.673 0.573 0.568
airport 0.676 0.638 0.584 0.459
coast 0.920 0.875 0.607 0.534

corridor 0.786 0.757 0.550 0.964
livingroom 0.471 0.464 0.447 0.765

office 0.938 0.822 0.675 0.938
park 0.660 0.749 0.630 0.849

speech 0.769 0.592 0.438 0.846
street 0.718 0.688 0.425 0.875

Average 0.741 0.686 0.549 0.774

Table 1: Comparison results of scene classification in term of test accuracy.

our golden standard. (2) The proposed model without ensemble. We randomly pick one out
of the trained multiple models to perform classification so as to evaluate the effect of the
simple ensemble technique on the performance of our system. (3) The proposed ensemble
model without the object chain structure. We simply remove the chain structure from the
model in Figure 2 to analyze the benefit gained by capturing object co-occurrence contextual
information.

The test prediction accuracies of all four methods are presented in Table 1. We can
see that the average performance of our approach is almost as good as the golden standard
method OB+SVM, which used supervised object detectors. In three out of the ten classes,
our unsupervised model even greatly outperforms OB+SVM. We have also tested an unsu-
pervised setting for OB+SVM where we randomly picked 30 object detectors to generate OB
representations for images and keep other procedures same as before. Its performance drops
dramatically so that we do not report those numbers in this paper. Comparing to the other two
baselines, the models without either the ensemble strategy or the chain structure, our pro-
posed model produces consistent superior performances across almost all scene classes. The
model without the chain structure produces the worst performance among all four methods.
These results suggest the object co-occurrence information is valuable for scene classifica-
tion, while the ensemble strategy can effectively increase the model robustness.

5 Conclusion

We have presented a hierarchical probabilistic graphical model to perform scene classifica-
tion. The proposed model can achieve automatic and implicit object annotation during the
training phase so as to save human effort of image annotation. Moreover, the contextual
information in form of object co-occurrence is explicitly represented by a probabilistic chain
structure in our model, and the issue of local optima is addressed using a simple ensem-
ble strategy. Our experimental results on the LabelMe dataset suggest that accurate object
annotations are important for scene classification, and the object co-occurrence information
captured in our proposed model contributes to great improvements over the test performance.
Overall, our proposed model demonstrated effective empirical performance, even comparing
to the state-of-the-art OB+SVM method that exploits supervised object detectors.
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