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Abstract

Recently, Krahenbuhl and Koltun proposed an efficient inference method for densely
connected pairwise random fields using the mean-field approximation for a Conditional
Random Field (CRF). However, they restrict their pairwise weights to take the form of a
weighted combination of Gaussian kernels where each Gaussian component is allowed to
take only zero mean, and can only be rescaled by a single value for each label pair. Fur-
ther, their method is sensitive to initialization. In this paper, we propose methods to alle-
viate these issues. First, we propose a hierarchical mean-field approach where labelling
from the coarser level is propagated to the finer level for better initialisation. Further,
we use SIFT-flow based label transfer to provide a good initial condition at the coarsest
level. Second, we allow our approach to take general Gaussian pairwise weights, where
we learn the mean, the co-variance matrix, and the mixing co-efficient for every mixture
component. We propose a variation of Expectation Maximization (EM) for piecewise
learning of the parameters of the mixture model determined by the maximum likelihood
function. Finally, we demonstrate the efficiency and accuracy offered by our method
for object class segmentation problems on two challenging datasets: PascalVOC-10 seg-
mentation and CamVid datasets. We show that we are able to achieve state of the art
performance on the CamVid dataset, and an almost 3% improvement on the PascalVOC-
10 dataset compared to baseline graph-cut and mean-field methods, while also reducing
the inference time by almost a factor of 3 compared to graph-cuts based methods.

1 Introduction
Labelling problems in computer vision are often modelled as discrete optimisation problems.
Examples include object class segmentation, stereo correspondence, image de-noising etc [9,
17]. Generally, these problems are solved in a Markov Random Field (MRF) or Conditional
Random Field (CRF) framework, where the basic model includes pairwise terms defined
over a grid with 4 or 8 neighbours. A more expressive model is to allow dense connectivity
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which captures long range interactions between variables. However the complexity increases
with more interactions.

Recently, Krahenbuhl and Koltun [8] proposed an efficient bilateral filtering based method
for inference in dense pairwise CRFs [1], where pairwise weights take the form of a weighted
combination of Gaussian kernels. Given this approach, they formulate multilabelling prob-
lems as performing approximate maximum posterior marginal (MPM) inference in a mean-
field approximation to the CRF [7]. Within this framework, empirically they achieve a signif-
icant speed-up compared to graph-cuts based methods [9], and observe improvements in the
accuracy on object-class segmentation problems. However, in its current form, their method
is associated with two limitations.

The first issue is related to the fact that the mean-field approximation assumes complete
factorisation over the individual variables [7]. Though this simplified model leads to efficient
and tractable models for learning and inference [5], the mean-field inference methods are
generally sensitive to initialisation [18]. Over the years, many different variants of mean-field
inference methods have been developed to solve the issue of initialisation [5, 7, 18]. In this
work, we propose a hierarchical mean-field approach to improve the quality of the solutions
by providing good initial conditions. We perform mean-field inference at the coarser level,
and transfer the labels from the coarser level to the finer level for initialisation. At the coarser
level, we use a SIFT-flow [10] based label transfer method for better initialisation. SIFT-flow
provides an elegant algorithm for finding the correspondence between two images, where
images are taken from different view points but share similar high level scene characteristics.
Given a query image, we use this strategy to find the nearest neighbour from the training set,
and warp the corresponding labelled ground truth image to the current query image. We use
this warped image to initialize the current labelling for the mean-field inference method at
the coarser level. Further, assuming the hierarchical mean-field proposes a good hypothesis
for initialisation, we re-weight the unary potentials based on the initialisations.

The second issue relates to the form of the pairwise weights in [8] which are a linear
combination of Gaussian kernels. Although they learn the standard deviation and weighting
co-efficient of each component, they allow each Gaussian component to take only zero mean.
Further, they use the same combination of Gaussian kernels for each label pair, though they
scale this by a learnt label compatibility function. In this paper, we propose an approach that
extends this model. Specifically, we allow our model to take a more general Gaussian mix-
ture model for every pair of labels, where we learn the mean, the co-variance matrix and the
mixing co-efficient of each Gaussian component. We propose a piecewise learning frame-
work where given a set of data points, we fit Gaussian mixture model to those points. We use
a variation of the Expectation Maximization (EM) algorithm for estimating the parameters
determined by maximum likelihood. It should be noted though that we do not learn the label
compatibility function as in [8].

In summary, our main contributions are:

• Proposing a hierarchical mean-field approach for transferring labels from the coarser
level to the finer level for better initialisation,

• An adaptation of the SIFT-flow based label transfer method to further improve initial-
isation by finding a semantically close nearest neighbours,

• An EM based algorithm for piecewise learning of a general Gaussian mixture model
for the pairwise terms, increasing the expressivity of the filter-based mean-field infer-
ence.
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We evaluate the accuracy and efficiency proposed by our method on object class seg-
mentation problem using the PascalVOC-10 segmentation [4] and CamVid datasets [3]. We
compare our results with the filter-based dense pairwise CRF method [8], and graph cuts
based α-expansion [9, 15] which does not incorporate dense pairwise connections, and val-
idate the significance of our methods. We achieve state of the art results on the CamVid
dataset, and observe an improvement of almost 3% on PascalVOC compared to baseline
graph-cut and mean-field methods, while also reducing the inference time by almost a factor
of 3 compared to graph-cuts based methods.

The rest of the paper is structured as follows. In section 2, we outline the bilater filter-
based efficient inference for dense pairwise CRF by Krahenbuhl and Koltun [8]. Section 3.1
provides the details of our hierarchical mean-field approach, and Sec. 3.2 gives the details of
learning and inference with general Gaussian pairwise terms. The experimental evaluations
are presented in Sec. 4.

2 Mean-field Inference in Dense Random Fields
We formulate the multilabel problem in a conditional random field (CRF) framework where
each random variable corresponds to a pixel in the image. Let X = {X1,X2, ...,XN} denote
the set of random variables corresponding to the image pixels i ∈ {1,2, ...,N}. Each random
variable takes a label from the label set L = {l1, l2, ..., lk}. A labelling x refers to any possible
assignment of labels to the random variables and takes values from the set L = LN .

We define a fully connected pairwise CRF where each variable is connected to all other
variables. Given this framework, the probability distribution P(x|I) over the labellings of the
CRF can be written as:

P(x|I) = 1
Z(I)

exp(−E(x|I))

where E(x|I) is the energy function corresponding to the current configuration, Z(I) is the
normalizing constant, and I is the given image data. For fully connected pairwise CRFs, the
energy function takes the form E(x|I) = ∑i ψi(xi)+∑i< j ψi j(xi,x j). The unary potentials
ψi(xi) are based on local feature responses and can take arbitrary form, but [8] restrict the
pairwise potentials to take the form of a linear combination of Gaussian kernels:

ψi j(xi,x j) = κ(xi,x j)
V

∑
v=1

w(v)k(v)(fi, f j) (1)

where κ(., .) is an arbitrary label compatibility function, while k(v)(., .), v = 1...V are Gaus-
sian kernels defined on feature vectors fi, f j derived from the image data at locations i and
j (where [8] form fi by concatenating the intensity values at pixel i with the horizontal and
vertical positions of pixel i in the image), and w(v), v = 1...V are used to weight the kernels.

Given this form of energy function, Krahenbuhl and Koltun [8] proposed a filter-based
method for performing fast inference in the mean-field approximation to the CRF. The mean-
field is a very simple distribution which assumes complete factorisation of the probability
distribution as: Q(X) = ∏i Qi(xi). The mean-field inference algorithm tries to minimize the
KL-divergence D(Q||P) between the approximate distribution Q, and the true distribution P.
By considering the conditions that must be satisfied at the minima, the following update may
be derived for Qi(xi = l) given the settings of Q j(x j) for all j 6= i (see [7] for a derivation):

Qi(xi = l) =
1
Zi

exp{−ψi(xi)− ∑
l′∈L

∑
j 6=i

Q j(x j = l′)ψi j(xi,x j)} (2)
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where Zi =∑xi=l∈L exp{−ψi(xi)−∑l′∈L ∑ j 6=i Q j(x j = l′)ψi j(xi,x j)} is a constant which nor-
malizes the marginal at pixel i. [8] show the expensive update equation in the mean-field is
approximated by a convolution with a bilateral filter in a high dimensional space as follows:

Q̃(v)
i (l) = ∑

j 6=i
k(v)(fi, f j)Q j(l) = [Gv⊗Q(l)](fi)−Qi(l) (3)

where Gv is a Gaussian kernel, and Q̃(v)
i (l) can be used to approximate the pairwise terms

in Eq. 2. Given this Gaussian convolution, they use a permutohedral lattice based bilateral
filtering method [1] for performing efficient inference. They run the update equation for
a fixed number of iterations, where each iteration leads to decrease in the KL-divergence
value. To extract a solution, they evaluate the approximate maximum posterior marginal as
xi = maxxi Qi(xi).

3 Methods
In this section, we describe our proposed algorithms for improving the robustness of the
filter-based mean-field inference method [8], and thus improving the quality of the solutions
offered by the method. Specifically, we focus on two aspects: providing a good initial con-
dition, and improving the quality of the pairwise weights, details of which are provided in
the Sec. 3.1, and Sec. 3.2 respectively.

3.1 Initialisation with hierarchical mean-field approximation
The mean-field approximation assumes complete factorisation of the probability distribution,
and is thus far from properly approximating the true marginal distribution. Consequently, one
problem with mean-field inference is that it is too easy to get stuck in local minima resulting
in sensitivity to initialisation [18]. To validate this, we conduct experiments on object class
segmentation on the PascalVOC-10 segmentation dataset, and we observe such behaviour
with mean-field inference. If we initialize our starting labelling with the maximum unary
potential responses, the mean-field approximation [8] achieves 28.52%, where the accuracy
is intersection/union (I/U) score measured per class (defined in terms of the true/false pos-
itives/negatives for a given class as TP/(TP+FP+FN)). If we initialize the solution with the
ground truth labelling, the mean-field results improved by almost 13% compared to the pre-
vious results. Thus, estimating a good starting point is critical to the mean-field inference
methods. We outline our approach based on the hierarchical mean-field and SIFT-flow ap-
proaches. The benefits are two fold: we use it to initialize the mean-field method as well
using the labels to re-rank the unary potentials.

Many problems in computer vision have been modelled by a coarse to fine hierarchy [6].
In this work, we investigate such a coarse to fine hierarchy for the mean-field approaxi-
mation. Here we restrict ourselves to using only two layers. But, the approach can be
generalized to any number of layers. We define a variable at a coarser level to correspond
to four variables at the next finer level. We apply mean-field inference at the coarse level,
and use the solution to initialize the mean-field inference at the finer level by assigning the
same label to all four variables corresponding to one at the coarse level. Further, we use a
SIFT-flow [11] based label transfer method to initialize the coarse level.

Ce Liu et.al. [10, 11] propose the SIFT-flow method for higher level image alignment,
where images are taken from different view points but share similar higher-level scene char-
acteristics. Correspondences between images are established based on SIFT features [12]
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Figure 1: Qualitative results of SIFT-flow method on PascalVOC-10 dataset. From left to
right: input test image, test image ground truth, ground truth of nearest training image, output
of mean-field [8] without and with SIFT-flow initialisation respectively.
in an energy minimization framework. They apply it in many problem domains including
video retrieval, scene alignment, face recognition, and object recognition tasks.

In this work, we use a similar strategy for label transfer. These transferred labels provide
good initial conditions, and act as a soft constraint on our solutions. Suppose we have a large
training set of annotated ground truth images with per pixel class labels. Now, given a test
image, we first find the K-nearest neighbour images using GIST features [13]. In general,
we restrict our set to 30 nearest neighbours. We then compute a dense correspondence using
the SIFT-flow method from the test image to each of 30 nearest neighbours. We re-rank
those nearest neighbours based on the flow values, and pick the best nearest neighbour.
Once we have recovered our best candidate, we warp the corresponding ground truth of the
candidate image to the current test image. We use these warped labels to initialize the mean-
field inference method. Figure 1 shows some of query images, nearest neighbours, and the
reranked images based on the SIFT-flow values.

3.2 General Gaussian mixture pairwise terms
Krahenbuhl and Koltun [8] use the following pairwise energy function:

E(X|I) = ∑
i

ψ(xi)+∑
i< j

κ(xi,x j)
V

∑
v=1

w(v)k(v)(fi, f j) (4)

where κ(xi,x j) is the label compatibility function between pairs of labels, and k(v)(fi, f j) is
the vth Gaussian kernel with zero mean and an arbitrary standard deviation. In this work,
we propose a method to alleviate this restrictive assumption by incorporating a more general
class of Gaussian mixture function to Eq. 4. Let our mixture function Gi j

(mix)(I) for the ith

and jth pair of labels take the following form:

Gi j
(mix)(I) =

M

∑
m=1

α
i j
mGm(I,µm,Σm) (5)

where α
i j
m , µm, and Σm are the mixing co-efficients, mean, and co-variance matrix of mth

Gaussian mixture component Gm corresponding to the (i j)th label pair, and I is an image
derived feature. Further, we assume the mixing co-efficients α i j to come from a probability
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distribution. On incorporating this Gaussian mixture function into Eq. 4, our final more
general pairwise energy function takes the following form:

E(X|I) = ∑
i

ψ(xi)+∑
i< j

κ(xi,x j)
V

∑
v=1

w(v)k(v)(fi, f j)−λ ∑
i< j

M

∑
m=1

α
(xi,x j)
m Gm(I,µm,Σm) (6)

Here λ is a weight which combines the contributions from two different sets of Gaussian
kernels, zero-mean kernels K(v)(., .) and our general learnt kernels Gi j

(mix). In principal, we
do not need a separate set of zero-mean Gaussian kernels, since they can be absorbed into our
general mixture model. However, we found it useful to treat these separately for parameter
setting. We now explain our learning method for the mixing co-efficients α(.,.), the mean
µm, and the co-variance matrix Σm.

Learning mixture models: Given this CRF model, we follow the piecewise strategy of [14]
for learning the parameters of the CRF. They show how the piecewise method provides an
efficient and accurate alternative to joint learning of the parameters. Thus, first we set the
parameters of unary ψ(xi), and first pairwise weights ∑i< j κ(xi,x j)∑

V
v=1 w(v)k(v)(fi, f j) fol-

lowing the works of [14] and [8] respectively. We then set the parameters α , µ , Σ using the
method described below, and the value of λ is set through cross validation.

Suppose we have a set of data points f′1, f
′
2, ..., f

′
n where each feature vector f′i is derived

from the image data at two locations f′i = fi− f j, and their ground truth labels are li and l j.
Let us represent our data by an N×D matrix F′, where the rows correspond to D dimensional
feature points f′i. Assuming the data points are drawn in an i.i.d. fashion, we define a log-
likelihood function as follows:

logP(F′|α,µ,Σ) =
N

∑
i=1

log{
M

∑
m=1

α
(lil j)
m Gm(f′i|αm,Σm)} (7)

Given this setting, we propose an Expectation Maximization (EM) method for learning pa-
rameters of the mixture models in maximum likelihood framework. During the M step, to
satisfy the conditions at the maximum of the function, we first take partial derivatives of
the function with respect to each parameter, and we set them to zero. First, we derive the
conditions for µm by setting the derivative of logP(F′|α,µ,Σ) w.r.t. µm to zero as follows:

∂ logP(F′|α,µ,Σ)

∂ µm
=−

N

∑
i=1

α
lil j
m G(f′i|µm,Σm)

∑m′ α
lil j
m′ G(f

′
i|µm′ ,Σm′)

∑
m
(f′i−µm) =−

N

∑
i=1

γim(f′i−µm) = 0 (8)

On rearranging this, we get the update equation for µm as µm = 1
Nm

∑
N
i=1 γimf′i. Following

similar strategy, we get the following update equations for Σm, and α lil j :

Σm =
1

Nm

N

∑
i=1

γim(f′i−µm)(f′i−µm)
T;α

lil j
m =

N
lil j
m

Nlil j
(9)

where Nl1l2
m = ∑i γ

lil j
im [li = l1∧ l j = l2], Nl1l2 = ∑i[li = l1∧ l j = l2], and Nm = ∑i γim. During

the M step we assume that the value of γim is constant. Then, during E step we evaluate

the value of γim =
α

lil j
m G(f′i|µm,Σm)

∑m′ α
lil j
m′ G(f

′
i|µm′ ,Σm′ )

assuming the Gaussian parameters µm,Σm and αm are

constant. Details of whole iterative procedure are given in the Algorithm 1.
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Algorithm 1: EM based learning Gaussian mixture model

input : Initialize α lil j , µm, Σm

converged := 0, ν := 1;
while converged = 0 do

E Step: evaluate γim =
α

li l j
m G(f′i|µm,Σm)

∑m′ α
li l j
m′ G(f

′
i|µm′ ,Σm′ )

;

M Step: re-estimate parameters: α lil j , µm, Σm as follows: ;
µm = 1

Nm
∑

N
i=1 γimf′i, Σm = 1

Nm
∑

N
i=1 γim(f′i−µm)(f′i−µm)

T ;

α
lil j
m = N

li l j
m

N li l j
, Nl1l2

m = ∑i γ
lil j
im [li = l1∧ l j = l2];

Nl1l2 = Nl1l2 = ∑i[li = l1∧ l j = l2], Nm = ∑i γim;
Evaluate the log likelihood logP(F′|α,µ,Σ);

end
Return α lil j ,µm,Σm;

Our piecewise learning strategy does not guarantee any bound on the solution achieved
even though [16] bound the solution achieved in their piecewise learning framework. The
first reason is that the parameter λ is not learnt jointly in the CRF. Further, we use a gener-
ative model to learn the parameters of the mixture components which given a pair of labels
models the distribution of feature vectors, and use the negative likelihood within the energy.
This is in contrast to [14] who maximize the conditional likelihood of the labels given the
training data and use the negative conditional log-likelihood as an energy term.

Inference with mixture model: Now, we explain our approach for efficient inference us-
ing the mixture model. Each mixture component involves evaluating an extra expensive
term: ∑i< j ∑

M
m=1 α

(xix j)
m Gm(I,µm,Σm). We formulate this expensive step as an efficient Gaus-

sian filtering operation in high dimensional space following the work of Krahenbuhl and
Koltun [8]. Thus, our filtering step under a non-zero mean is given by:

Q̃m
i (l) = ∑

j 6=i
Gm(fi− f j|µm,Σm) = [Gm⊗Q(l)](fi−µm)−Gm(0)Q(i)(l) (10)

We use the permutohedral lattice based filtering method [1] for fast filtering. We first embed
the feature points in the high dimensional space translating the points by the means µm and
project them onto the lattice points. We apply blurring on the mean-shifted feature points.

4 Experiments
We demonstrate the accuracy and efficiency offered by our approach on object-class segmen-
tation problems on two challenging datasets: Cambridge-driving Labelled Video Database
(CamVid) [3], and PascalVOC-10 segmentation dataset [4]. In all experiments, timings are
based on code run on an Intel(R) Xeon(R) 3.33 GHz processor, and we fix the number of full
mean-field update iterations to 5 for all models. We compare our method with two baselines,
the dense CRF [8], which uses filter-based inference, and graph cuts based alpha-expansion
which is not densely connected. We use the permutohedral lattice [1] for filtering in all mod-
els. In all our models, we have only unary and pairwise connections. We evaluate the efficacy
of learning the Gaussian mixture components for the pairwise terms in the potts setting for
the object-class segmentation problem on PascalVOC dataset. We learn a model with m = L
Gaussian components, using data from label pairs li = l j only. This generates L×L mixing
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Algorithm Time (s) Overall (%-corr) Av. Recall Av. U/I
α-exp (U+P) [2] 0.96 78.84 58.64 43.89

APST (U+P+H)[15] 1.6 85.18 60.06 50.62
dense CRF (U + dense P) [8] 0.2 79.96 59.29 45.18
Ours (U + dense P + hierar) 0.35 85.31 59.75 50.56

Table 1: Quantitative results on CamVid. The table compares the timing and performance
of our approach (last line) against three baselines. The importance of better initialisation is
confirmed by the fact that we achieve state of the art results. Futher, our model with just
unary and pairwise terms is also able to slightly improve results compared to the model of
[15] which along with unary and pairwise terms uses segment based higher order terms.

Algorithm Time (s) Overall (%-corr) Av. Recall Av. U/I
α-exp (U+P) [2] 3.0 79.52 36.08 27.88

AHCRF (U+P+H) + Cooc [9] 36 81.43 38.01 30.9
dense CRF (U + dense P) [8] 0.67 71.63 34.53 28.4

Ours1 (U + dense P+GM) 26.7 80.23 36.41 28.73
Ours2 (U+ dense P+hierar) 0.90 79.65 41.84 30.95

Ours3 (U+ dense P+hierar+GM) 26.7 78.96 44.05 31.48

Table 2: Quantitative results on PascalVOC-10. The table compares the timing and perfor-
mance of our approach (last three lines) against three baselines. The importance of better
initialisation and Gaussian mixtures is confirmed by the significant improvement achieved
compared to the other methods, which use only unary and pairwise connections, and slight
improvement in the results compared to the model of [9] which uses segment based higher
order terms, detector potentials, and co-occurrence terms as well.
co-efficients α i j ∈ [0 1], thus allowing each li = l j label pair to reweight the L Gaussian com-
ponents. Further, we note our overall timings do not include the timings for SIFT-flow, and
for embedding the feature points in the permutohedral lattice. We assess the overall percent-
age of pixels correctly labelled, the average recall per class, and the intersection/union (I/U)
measure per class.
CamVid dataset: We test our model on the CamVid training and test set. We use the
same split as used by [15] who randomly partition 600 images into 367 training images, and
233 test images, and the same number of 11 object classes. Table 1 quantitatively compares
our methods with other methods. We observe an overall improvement of 6.5% compared
to graph-cuts based α-expansion and 5.5% compared to the dense CRF method [8]. In all
these cases, we used only unary and pairwise connections. Further, our model with unary
and pairwise connections performs better than [15] who use unary, pairwise and higher order
terms by almost 0.2%. We observe a qualitative improvement, importantly we are able to
recover sign-poles, and building parts missing from the output of other methods, as shown in
the Fig. 2. Further, we also note our approach is able to reduce the inference time by a factor
of 3 to 5 compared to graph cuts based α-expansion and the work of [15].
PascalVOC dataset: We also test our model on the PascalVOC-10 training and validation
set. We use the same split as used in [8], who randomly partition the available images into 3
groups: 40% training, 15% validation, and 45% test set. Further, we use the unary potentials
provided by [8], and an Ising label compatibility function µ(l1, l2) = [l1 6= l2].

Qualitative and quantitative results are shown in Fig. 2 and Tab. 2 respectively. Our ap-
proaches are able to outperform both of the baseline methods in terms of union-intersection
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Figure 2: Qualitative results on PascalVOC-10 (first 2 rows) and CamVid (last 2 rows)
datasets. From left to right: input image, ground truth, output from [9] (U+P), output from
[8] (dense CRF), output from our dense CRF with better initialisation and Gaussian mixture.
(U/I) metrics, demonstrating the importance of the Gaussian mixture components, and hier-
archical SIFT-flow based initialisations. As shown, we observe an improvement of almost
1% in union-intersection (U/I) score compared to graph-cuts based α-expansion and 0.3%
compared to the dense CRF of [8] on inclusion of the Gaussian mixture components. Further,
using our second model with better initialisations, we are able to improve the U/I accuracy by
almost 3% and 2.5% compared to the baseline methods. In our final model which includes
the mixture components and the better initialisation strategy, we observe an improvement of
3.5% and 3% over the baseline methods. Further, although our final model only includes
unary and pairwise terms, we observe 0.5% improvement in U/I score and almost 6% im-
provement in the average recall scores over the work of [9] who include higher order terms,
detector potentials, and object co-occurrence terms along with unary and pairwise potentials.
Apart from the improved accuracy offered by our approaches, we also observe an improve-
ment in the inference timing compared to the graph-cuts based baseline methods. Our model
with better initialisation achieves a speed up of 3 times compared to the α-expansion method,
and a speed up of 40 times compared to the work of [9], although our method with the Gaus-
sian mixture components is slower as we have to evaluate the filtering step separately for
each of the mixture components in the model. Finally, we note that our aim here is to as-
sess the relative performance of our approach with respect to our baseline methods, and we
expect that our model will need further refinement to compete with the current state of the
art on Pascal (our results are ∼ 9% lower for average union/intersection compared to the
highest performing method on the 2011 challenge, see [4]). We also note that [8] are able
to further improve their average union/intersection score to 30.2% by learning the pairwise
label compatibility function, which remains a possibility for our model also.

5 Conclusion
In this paper, we propose two methods to improve the accuracy and efficiency offered by
the filter-based mean-field inference method [8]. Specifically, we focus on two aspects of
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the mean-field inference: providing a good initial condition, and improving the mean-field
inference by using more general pairwise weights. We propose a hierarchical mean-field
inference method where we perform inference at the coarser level, and propagate the solu-
tion from the coarser level to the finer level. We use SIFT-flow to initialise the mean-field
inference at the coarser level. Further, we propose a piecewise framework for learning the
parameters of the mixture of Gaussian pairwise weights using Expectation Maximization
(EM) algorithm where parameters are determined by maximum likelihood functions. We
extensively evaluate our method on object class segmentation on two challenging datasets,
PascalVOC-10 segmentation and CamVid dataset, and observe a significant improvement in
accuracy and efficiency over the other existing approaches.
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the European Community, under the PASCAL2 Network of Excellence. Prof. Philip H.S.
Torr is in receipt of Royal Society Wolfson Research Merit Award.
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