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We present a novel mixture of trees (MoT) graphical model for video
segmentation. Each component in this mixture represents a tree structured
temporal linkage between super-pixels from the first to the last frame of a
video sequence. Our time-series model explicitly captures the uncertainty
in temporal linkage between adjacent frames which improves segmenta-
tion accuracy. We provide a variational inference scheme for this model to
estimate super-pixel labels and their confidences in nearly realtime. The
efficacy of our approach is demonstrated via quantitative comparisons on
the challenging SegTrack joint segmentation and tracking dataset [6].
Motivation. It is a common practice in computer vision problems to es-
tablish mappings between frames via optic flow algorithms [4] or long
term point trajectories. However for tasks requiring semantic label propa-
gation in video sequences, satisfactory results are not achieved: [1]. Poor
performance can be attributed to a lack of robust occlusion handling, label
drift caused by round-off errors, high cost of multi-label MAP inference
or sparsity of robust mappings. These issues have led to the use of la-
bel inference over short overlapping time windows ([6]) as opposed to a
full length video volume. To address these issues, we have developed a
novel super-pixel based mixture of trees (MoT) video model, motivated
by the work of Budvytis et. al [3]. Our model alleviates the need to use
short time window processing and can deal with occlusions effectively. It
requires no external optic flow computation, and instead, infers the tem-
poral correlation from the video data automatically. We also provide an
efficient structured variational inference scheme for our model, which es-
timates super-pixel labels and their confidences. The uncertainties in the
temporal correlations are also inferred, unlike the joint label and motion
optimisation method of [6] where only a MAP estimate is obtained.
Model. Let Si, j denote super-pixel j at frame i, and Zi, j denote the corre-
sponding missing label. We associate the temporal mapping variable Ti, j
to super-pixel Si, j. Ti, j can link to super-pixels in frame i−1 which have
their centers lying within a window Wi, j, placed around the center of Si, j.

Let Si =
{

Si, j
}Ω(i)

j=1 , Zi =
{

Zi, j
}Ω(i)

j=1 and Ti =
{

Ti, j
}Ω(i)

j=1 denote the set of
super-pixels, their labels and the correponding temporal mapping vari-
ables respectively at frame i. Ω(i) denotes the number of super-pixels in
frame i. Our proposed mixture of trees (MoT) probabilistic model for the
video sequence factorises as follows:

(1)
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1
Z (µ) ∏
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where Si−1,Ti, j indexes the super-pixel mapped to by Ti, j in frame i−1 and
similarly for Zi−1,Ti, j . To define the appearance factor Ψa(.) of the MRF
on the R.H.S of Eqn. 1, we first find the best match pixel in frame i−1 for
a pixel in frame j by performing patch cross-correlation within a pre-fixed
window. The appearance factor is then defined using the number of pixels
in super-pixel Si, j which have their best matches in Si−1,Ti, j as follows:

Ψa
(
Si, j,Si−1,Ti, j

)
, #shared pixel matches. (2)

Note that more sophisticated super-pixel match scores can also be substi-
tuted here as in [4]. The label factor Ψl(.) is defined between the multi-
nomial super-pixel label random variables as follows:

Ψl
(
Zi, j = l,Zi−1,Ti, j = m|µ

)
, µ (if l = m) or 1−µ (if l 6= m) , (3)

where l,m take values in the label set L. µ is a parameter which controls
label affinity. We set it to a value of 0.95 in our experiments. The single
node potential for the temporal mapping variables Ψt(.) is similar to a
box prior and is defined as follows:

Ψt
(
Ti, j

)
, 1.0

(
if Ti, j ∈Wi, j

)
or 0.0(if outside) . (4)
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Figure 1: The first two rows show the image sequence Monkey-dog from the Seg-
Track dataset [6] and the corresponding ground truth. The segmentation algorithm
in this sequence has to cope with fast shape changes, motion blur and overlap be-
tween foreground and background appearances. Row (c) is the inferred labels using
the MoT time-series and with flat unaries. Row (d) are the Random Forest predic-
tions when trained using the posteriors in row (c). Fusing these predictions with
the MoT time-series results in an improved segmentation in row (e). Bright white
and dark black correspond to confident foreground and background respectively.

The super-pixel label unary factors Ψu
(
Zi, j

)
are defined as output of Ran-

dom Decision Forest Classifier (see Fig. 1 above and Sec. 4 in the paper).
From Eqn.1 we note that the temporal mapping variable is present both
in the appearance and label factor. Thus these variables are jointly influ-
enced by both object appearance and semantic labels, a property which is
desirable for interactive video segmentation systems.
Inference. We use structured variational inference scheme [5] where we

assume the following form for the approximate variational posterior of
the latent variables.

Q(Z0:n,T1:n), Q(Z0:n) ∏
i=1:n

∏
j=1:Ω(i)

Q
(
Ti, j

)
. (5)

The temporal mappings are assumed independent in the approximate pos-
terior, however, the super-pixel latent labels do not factorise into indepen-
dent terms, thereby maintaining structure in the posterior. The observed
data log likelihood log(S0:n|µ) is lower bounded using the approximate
posterior in Eqn. 5. To maximise the above lower bound we employ cal-
culus of variations [2]. Finally, to compute the approximate super-pixel
label and required pair-wise marginals we use variational message pass-
ing [2].
Evaluation. We evaluated the performance of our approach in a tracking
and segmentation setting using the challenging SegTrack [6] dataset. Fig.
1 illustrates qualitative results of different stages of our algorithm on a
Monkey-dog sequence from SegTrack. A detailed qualitavive and quanti-
tative comparisons with some of the recent state of the art approaches are
provided in the paper.
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