MoT - Mixture of Trees Probabilistic Graphical Model for Video Segmentation
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We present a novel mixture of trees (MoT) graphical model for video
segmentation. Each component in this mixture represents a tree structured
temporal linkage between super-pixels from the first to the last frame of a
video sequence. Our time-series model explicitly captures the uncertainty
in temporal linkage between adjacent frames which improves segmenta-
tion accuracy. We provide a variational inference scheme for this model to
estimate super-pixel labels and their confidences in nearly realtime. The
efficacy of our approach is demonstrated via quantitative comparisons on
the challenging SegTrack joint segmentation and tracking dataset [6].
Motivation. It is a common practice in computer vision problems to es-
tablish mappings between frames via optic flow algorithms [4] or long
term point trajectories. However for tasks requiring semantic label propa-
gation in video sequences, satisfactory results are not achieved: [1]. Poor
performance can be attributed to a lack of robust occlusion handling, label
drift caused by round-off errors, high cost of multi-label MAP inference
or sparsity of robust mappings. These issues have led to the use of la-
bel inference over short overlapping time windows ([6]) as opposed to a
full length video volume. To address these issues, we have developed a
novel super-pixel based mixture of trees (MoT) video model, motivated
by the work of Budvytis et. al [3]. Our model alleviates the need to use
short time window processing and can deal with occlusions effectively. It
requires no external optic flow computation, and instead, infers the tem-
poral correlation from the video data automatically. We also provide an
efficient structured variational inference scheme for our model, which es-
timates super-pixel labels and their confidences. The uncertainties in the
temporal correlations are also inferred, unlike the joint label and motion
optimisation method of [6] where only a MAP estimate is obtained.
Model. Let S; ; denote super-pixel j at frame i, and Z; ; denote the corre-
sponding missing label. We associate the temporal mapping variable 7; ;
to super-pixel S; ;. T; j can link to super-pixels in frame i — 1 which have
their centers lying within a window W; ;, placed around the center of S; ;.
Let S; = {Su}?:(ll), Zi = {Zhj}?:(ll) and 7; = {T,J}?:(ll) denote the set of
super-pixels, their labels and the correponding temporal mapping vari-
ables respectively at frame i. Q(i) denotes the number of super-pixels in
frame i. Our proposed mixture of trees (MoT) probabilistic model for the
video sequence factorises as follows:
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where S;_ 7, ; indexes the super-pixel mapped to by 7; j in frame i — 1 and
similarly for Z;_; 7 . To define the appearance factor Wq(.) of the MRF
on the R.H.S of Eqn. 1, we first find the best match pixel in frame i — 1 for
a pixel in frame j by performing patch cross-correlation within a pre-fixed
window. The appearance factor is then defined using the number of pixels
in super-pixel S; j which have their best matches in S;_; 7; ; as follows:
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Note that more sophisticated super-pixel match scores can also be substi-
tuted here as in [4]. The label factor ¥;(.) is defined between the multi-
nomial super-pixel label random variables as follows:

W, (Sij,Si-11;;) = #shared pixel matches.
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where [, m take values in the label set £. u is a parameter which controls
label affinity. We set it to a value of 0.95 in our experiments. The single
node potential for the temporal mapping variables W;(.) is similar to a
box prior and is defined as follows:
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Figure 1: The first two rows show the image sequence Monkey-dog from the Seg-
Track dataset [6] and the corresponding ground truth. The segmentation algorithm
in this sequence has to cope with fast shape changes, motion blur and overlap be-
tween foreground and background appearances. Row (c) is the inferred labels using
the MoT time-series and with flat unaries. Row (d) are the Random Forest predic-
tions when trained using the posteriors in row (c). Fusing these predictions with
the MoT time-series results in an improved segmentation in row (e). Bright white
and dark black correspond to confident foreground and background respectively.

The super-pixel label unary factors ¥, (Zi, j) are defined as output of Ran-
dom Decision Forest Classifier (see Fig. 1 above and Sec. 4 in the paper).
From Eqn.1 we note that the temporal mapping variable is present both
in the appearance and label factor. Thus these variables are jointly influ-
enced by both object appearance and semantic labels, a property which is
desirable for interactive video segmentation systems.

Inference. We use structured variational inference scheme [5] where we
assume the following form for the approximate variational posterior of
the latent variables.
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The temporal mappings are assumed independent in the approximate pos-
terior, however, the super-pixel latent labels do not factorise into indepen-
dent terms, thereby maintaining structure in the posterior. The observed
data log likelihood log (Sp.,|1t) is lower bounded using the approximate
posterior in Eqn. 5. To maximise the above lower bound we employ cal-
culus of variations [2]. Finally, to compute the approximate super-pixel
label and required pair-wise marginals we use variational message pass-
ing [2].
Evaluation. We evaluated the performance of our approach in a tracking
and segmentation setting using the challenging SegTrack [6] dataset. Fig.
1 illustrates qualitative results of different stages of our algorithm on a
Monkey-dog sequence from SegTrack. A detailed qualitavive and quanti-
tative comparisons with some of the recent state of the art approaches are
provided in the paper.
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