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Abstract

We introduce in this paper a novel image annotation approach based on maximum
margin classification and a new class of kernels. The method goes beyond the naive
use of existing kernels and their restricted combinations in order to design “model-free“
transductive kernels applicable to interconnected image databases. The main contribu-
tion of our method includes the minimization of an energy function mixing i) a recon-
struction term that factorizes a matrix of interconnected image data as a product of a
learned dictionary and a learned kernel map ii) a fidelity term that ensures consistent
label predictions with those provided in a training set and iii) a smoothness term which
guarantees similar labels for neighboring data and allows us to iteratively diffuse kernel
maps and labels from labeled to unlabeled images. Solving this minimization problem
makes it possible to learn both a decision criterion and a kernel map that guarantee linear
separability in a high dimensional space and good generalization performance. Exper-
iments conducted on image annotation, show that our obtained kernel achieves at least
comparable results with related state of the art methods on the MSRC and the Corel5k
databases.

1 Introduction
With the exponential growth of multimedia sharing spaces, such as social networks, visual
contents are nowadays abundant. Searching these large collections requires a preliminary
step of image annotation that translates visual contents into labels also known as keywords
or concepts (see for instance [12]). Automatic image annotation is challenging due to the per-
plexity when assigning many possible labels to images and the difficulty to analyze rich and
highly semantic contents. In annotation, image observations are first described using low-
level features (color, texture, shape, etc.), and labels are then assigned to images using variety
of inference techniques such as hidden Markov models [13], latent Dirichlet allocation [4],
probabilistic latent semantic analysis [23], and support vector machines (SVMs) [9, 41, 45].
These inference techniques are used in order to model the correspondence between low level
features and labels and allow us to predict keywords for unlabeled images.

Among existing image annotation approaches, machine learning ones are particularly
successful and may be categorized into generative and discriminative. Generative methods
model a priori knowledge and dependencies between image observations and their possible
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labels using for instance graphical models [15, 16, 19, 42]. In these models, the annotation
process is based on maximizing a posterior probability using a variety of network infer-
ence techniques. This category of methods even though relatively successful suffers from
complexity in modeling and inference especially when labels are taken from a large scale
vocabulary. Alternative approaches are discriminative and consider image annotation as a
classification problem [10, 11, 14, 40]. A vocabulary of labels is first defined, and a decision
criterion is then learned for each label and used in order to identify images belonging to that
label.

The two aforementioned categories of machine learning techniques are highly dependent
on the learned concepts and may fail when the latter are highly semantic and difficult to
model. In order to overcome these issues, recent discriminative approaches consider a priori
knowledge and relationships between data and the learned concepts (context, shared features,
etc.) [15, 17, 19, 25, 29, 31, 32, 32, 48]. The success of these image annotation methods,
also depends on cardinality of the labeled data and the choice of the appropriate setting
for learning. The inductive setting [10, 11, 14, 40] consists in building a decision function
for each concept using labeled images, and uses that function in order to generalize across
unlabeled images. In these methods, labeled data are usually scarce and expensive; only a
very small fraction of training images is labeled and the unlabeled images may not follow
the same distribution as the labeled ones, so learning using inductive techniques is clearly
not appropriate. Alternatives [3, 46] may include the unlabeled data as a part of the learning
process and this is known as transductive inference. The concept of transductive inference, or
transduction, was pioneered by Vapnik (see for instance [46]). It relates to semi-supervised
learning [6] and relies on the i) smoothness assumption which states that close data in a high-
density area of the input space, should have similar labels [6] and ii) the cluster assumption
which finds decision rules in low density areas of the input space [6]. Learning consists
in building decision functions by optimizing the parameters of a learning model together
with the labels of the unlabeled data (see for instance [3, 26, 27, 37]). When applied, these
transductive methods turned out to be very useful in order to overcome the limited cardinality
of the labeled images in image annotation [8, 18, 35, 50, 52].

Among popular learning techniques support vector machines [9, 41, 45] are well studied
and proved to be performant in image annotation [20]; in SVMs, kernels are used in order to
model visual similarity between images, and only images sharing the same concepts are ex-
pected to have high kernel values. The success of SVMs is therefore, highly dependent on the
choice of kernels and usual ones, such the linear, the gaussian and the histogram intersection,
may not be appropriate in order to capture the actual and the semantic similarity between im-
ages for some specific concepts. Better kernels based on tuning Mahalanobis distances were
obtained by minimizing the ratio between intra and inter class distances [7, 24, 28] while
others were designed using semidefinite programming [30]. In order to take extra advantage
from different settings, multiple kernels (MKL) were also introduced [1, 2, 39, 43, 51] and
consider convex (and possibly sparse) linear combinations of elementary kernels and proved
to be more suitable [47]. With the current state of the art, MKL are considered as one of the
most effective kernel design and combination techniques. Nevertheless, MKL based design
hits at least two major limitations; On the one hand, and as mentioned earlier, these methods
are limited by the cardinality of labeled data and they do not rely on any extra information
in order to overcome that limitation, on the other hand they are mainly restricted to linear
combinations of existing kernels only.

In this paper we introduce a novel transductive learning algorithm, for kernel learning
and image classification and annotation. Our method is based on a constrained matrix fac-
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torization which produces a kernel map that takes image data from the input space into a
high dimensional space in order to guarantee their linear separability while maximizing their
margin. This margin property, however, and as known [45], does not necessarily guarantee
good generalization performance on the unlabeled set, if the latter is drawn from a different
probability distribution compared to the labeled data. Therefore and beside maximizing the
margin, our transductive approach includes a regularization term that enforces smoothness
and low rankness in the resulting kernel map in order to correctly diffuse labels to the un-
labeled data. Following our formulation, and in contrast to MKL, our learning model is not
restricted to only convex linear combinations of existing kernels; indeed it is model-free. Fur-
thermore, it also takes advantage from both labeled and unlabeled data and this results into
better generalization performances as corroborated by our image annotation experiments.

The remainder of this paper is organized as follows. We introduce our transductive learn-
ing approach and kernel design in Section 2 and the implementation of our optimization
procedure in Section 3. We illustrate in Section 4 the application of our method to image an-
notation using two datasets; MSRC and Corel5K. We conclude the paper in Section 5 while
providing a possible extension for a future work.

2 Problem Formulation

Define X ⊆ Rn as an input space corresponding to all the possible image features and let
S = {x1, . . . ,xl , . . . ,xm} be a finite subset of X with an arbitrary order. This order is defined
so only the first l label vectors of S, denoted {y1, . . . ,yl} are given; here yi ∈ {−1,+1}r and
r is the number of possible labels used for annotation. In many real-world applications only
a few data is labeled (i.e., l � m) and its distribution may be different from the unlabeled
data.

We can view S as a matrix X in which the ith column Xi corresponds to xi and Y is
the label matrix of X where its ith column Yi corresponds to yi. Different from binary
classification, in multi-label classification, a sample Xi may have more than one label, i.e.,
r > 1, with Yik = +1 iff Xi has the kth label and Yik = −1 otherwise. Our objective is to
build both a decision criterion and an optimal kernel map in order to infer the unknown label
vectors {Yl+1, . . . ,Ym}.

2.1 Max Margin Inference for Multi-label Classification

The general classification problem aims to learn a classifier f , that minimizes training error
and also generalize well on test data, as

argmin
f
R( f )+ γc

l

∑
i=1

`( f (xi),yi) , (1)

R is a regularizer that controls model complexity, `( f (xi),yi) is the loss associated with
a prediction f (xi) when the true output is yi and γc > 0 balances these two terms. In the
max-margin classification [45], f (xi) = W′φ(xi) (for a well chosen W) and φ is a mapping
of the input data (in X ) into a high dimensional space H. The dimension of H is usually
sufficiently large (possibly infinite) in order to guarantee linear separability of data.
Assuming data linearly separable in H, the max-margin inductive learning finds W (and
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hence f ) as

argmin
W

1
2
‖W‖2

F + γc

l

∑
i=1

`
(
W′

φ(xi),yi
)

(2)

here W′ is the transpose of W and ‖W‖2
F denotes the Frobenius norm. Following the kernel

trick [41], one may show that the classification function f may also be expressed as a linear
combination of symmetric, continuous and positive semi-definite functions (called kernels).
A kernel (denoted κ) is defined on two samples xi,x j as κ(xi,x j) = 〈φ(xi),φ(x j)〉. The
closed form of κ(xi,x j) may also be defined among a collection of existing kernels includ-
ing linear, polynomial and histogram intersection; but the underlying mapping φ(x) ∈ H is
usually implicit, i.e., it does exist but it is not necessarily known and may be infinite dimen-
sional.
We propose in the remainder of this section a new approach that builds explicit and fi-
nite dimensional kernel map. In contrast to usual kernels, such as the gaussian, the VC-
dimension [45], related to a finite dimensional kernel map, is finite1. According to Vapnik’s
VC-theory [45], the finiteness of the VC-dimension avoids loose generalization bounds and
may guarantee better performance.

2.2 Learning Low-Rank Kernel
Now, we turn the problem into finding the hyperplane parameters W as well as a Gram
(kernel) matrix K = Φ

′
Φ where each column Φi corresponds to an explicit mapping of xi

into a high dimensional space (i.e., φ(xi) = Φi). This mapping is designed in order to i)
guarantee linear separability of data in S, ii) to ensure good generalization performance by
maximizing the margin, iii) to approximate the input data, and also iv) to ensure positive
definiteness of K by construction, i.e., without adding further constraints. This results into
the following constrained minimization problem

min
B,Φ,W

µ

2 ‖Φ‖
2
F + 1

2 ‖W‖
2
F + γc

2

∥∥∥∥[ X
Y

]
−
[

B 0n×p
0r×p W′

][
Φ

ΦC

]∥∥∥∥2

F
s.t ‖Bi‖2

2 = 1, ∀i = 1, . . . , p
, (3)

here C ∈ Rm×m is a diagonal matrix with Cii = 1{1≤i≤l}, 0n×p and 0r×p are n× p and r× p
zeros matrices respectively, X ≈ BΦ is factorized using an overcomplete basis B ∈ Rn×p

(i.e., p > n) and a new kernel map Φ ∈ Rp×m.
As discussed earlier, and according to [45], the VC-dimension (related to a family of

classifiers) depends also on the dimension of the learned kernel map and this may affect gen-
eralization, especially if this dimension is very high. Since the actual (intrinsic) dimension
of the learned kernel map Φ is unknown, we choose the number of basis p to be sufficiently
large such that the factorization term (in the right-hand side term of Eq. 3) tends to zero
for an infinite number of solutions. In practice, p is overestimated and set to max(l,n)+1,
and this guarantees that the above constrained minimization problem has a solution. Then,
the actual (intrinsic) dimension is found by regularizing Eq. 3 by the Frobenius norm ‖Φ‖2

F
which has similar effect as the nuclear norm where µ ≥ 0 controls the rank of K. Indeed,
the squared Frobenius norm is exactly the `2-norm on the eigenvalues of K and it is less
likely to shrink these eigenvalues into zeros compared to the `1-norm (which is the nuclear
norm). Nevertheless, it provides a closed form kernel solution and our experiments show
that it indeed reduces the rank of the kernel map while allowing to learn effective classifiers.

1The VC-dimension is the maximum number of data samples, that can be shattered, whatever their labels.
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(a) (b) γs = 1,γc = 1 (c) γs = 10,γc = 1 (d) γs = 102,γc = 1 (e) γs = 103,γc = 102

Figure 1: (a) This figure shows the input data where different colors stand for different
classes; red-colored data are annotated with (1 − 1)′, blue-colored data with (−1 1)′ and
green-colored data with (1 1)′. Note that just one training sample per class (diamond-shaped)
is labeled while others are unlabeled. Our algorithm is initialized with p = 10 and after 5
iterations (before convergence) it reduces the ranks to 4. Figures (b,c,d) are the learned
kernel maps (shown in 3d) and the obtained decision hyperplanes for different setting of the
parameters γc and γs.

2.3 Transductive Setting

For a better conditioning of Eq. 3, we implement in this section the smoothness assumption
discussed in Section 1. This makes it possible to design smooth kernel maps and to assign
similar predictions to neighboring data (see toy example in Fig. 1).

We model the input data S using an adjacency graph G = (V,E) where nodes V =
{v1, . . . ,vm} correspond to samples {xi} and edges E = {ei, j} are the set of weighted links
of G. In the above definition, xi ∈ Rn is a feature vector (color, texture, etc.) while ei, j =
(vi,v j,Ai j) defines a connection between vi, v j weighted by Ai j. The latter is defined as
Ai j = 1{v j∈Nk(vi)} · s(xi,x j), here s(·, ·) is a visual similarity function and the neighborhood
Nk(vi) of a given node vi, includes the set of the k-nearest neighbors of vi. Notice that the
neighborhood system is designed in order to guarantee that ∀vi,v j ∈ V , v j ∈ Nk(vi) implies
vi ∈ Nk(v j) and vice-versa. Considering f (xi) = W′Φi and f (x j) = W′Φ j, we define our
regularizer as

γs

4

m

∑
i=1, j=1

‖W′
Φi−W′

Φ j‖2Ai j (4)

which can be rewritten as γs
2 tr(W′ΦLΦ

′W), here γs ≥ 0 and L is the graph Laplacian defined
by L = D−A and D = diag(A1) where 1 is the all-ones vector of length m. We obtain the
complete form of our transductive learning problem as

min
B,Φ,W

µ

2 ‖Φ‖
2
F + 1

2 tr
(

W′ (Ip + γsΦLΦ
′)W

)
+ γc

2

∥∥∥∥[ X
Y

]
−
[

B 0n×p
0r×p W′

][
Φ

ΦC

]∥∥∥∥2

F
,

s.t ‖Bi‖2
2 = 1, ∀i = 1, . . . , p

(5)
with Ip the p× p identity matrix and again C is the diagonal m×m matrix for which the ith

diagonal element is fixed to 1 for a labeled sample, and 0 for an unlabeled one.
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3 Optimization
It is clear that the minimization problem in Eq. 5 is not convex jointly w.r.t B,Φ,W. We
consider an alternative optimization procedure by solving three subproblems: we first opti-
mize the matrix W and we update the basis B, then we minimize the regularization criterion,
the rank and the reconstruction error w.r.t Φ. This process is repeated until convergence;
i.e., all the unknowns remain unchanged from one iteration to another. Different steps of the
algorithm are shown in Algorithm 1; the superscript (t) is added to W, B and Φ in order to
show the evolution of their values through different iterations of the learning process.

Algorithm 1 Transductive Kernel Map Learning
Input: labeled {(xi,yi)} l

i=1 and unlabeled data {xi}m
i=l+1

Initialization: set the adjacency matrix A, t← 0 and set Φ
(0) to a random full rank matrix.

Repeat steps (1+2) until convergence

1. Update W(t+1) and B(t+1) using Eq. 6,7 respectively.

2. Update Φ
(t+1) by taking the limit Ψ̃ of Eq. 8, with Ψ

(0) = Φ
(t).

Output: kernel maps {Φ̃i} and labels {yi} with yi = W′Φ̃i.

Learning Basis and Classifier. Assuming fixed Φ
(t) (denoted simply as Φ) and enforcing

the gradient of Eq. 5 to vanish (w.r.t W) leads to

W(t+1) = γc

(
Ip +Φ(γcC+ γsL)Φ

′
)−1

ΦCY′. (6)

Similarly, we find B(t+1) by solving the dual problem

argmax
Λ

[
argmin

B

(
1
2
‖X−BΦ‖2

F + tr
(
B′ΛB

)
− tr(Λ)

)]
, (7)

where Λ is the diagonal matrix whose entry Λii is equal to the Lagrange multiplier λi associ-
ated with the ith equality constraint in Eq. 5. After maximizing Eq. 7 w.r.t Λ, we obtain the
optimal basis B(t+1) = XΦ

′ (ΦΦ
′+Λ∗)−1.

Learning Kernel Map. Considering fixed B(t+1) and W(t+1) (denoted simply as B, W in
the remainder of this section), and the previous kernel map solution Φ

(t), our goal is to
find Φ

(t+1) by solving Eq. 5. The optimization problem in Eq. 5 admits a unique solution
Φ

(t+1) = Ψ̃ where Ψ̃ = lim
k→∞

Ψ(k) and

Ψ
(k)
i =

(
γcB′B+(γsDii + γcCii)WW′+µIp

)−1

.

[
γcB′X+ γcWYC+ γsWW′Ψ(k−1)A

]
i
,

(8)
here Ψ

(k)
i and [.]i stand for the ith column of a matrix. Proof about this kernel map so-

lution and its convergence to a fixed point are detailed in [49]. The process described in
Eq. 8 allows us to recursively diffuse the kernel maps from the labeled to the unlabeled data,
through the neighborhood system defined in the graph G. The algorithm convergences when
‖Ψ(k)−Ψ

(k−1)‖ ≤ ε; (in practice, ε = 10−2, and convergence usually happens in less than
100 iterations).
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4 Experiments

In this section, we evaluate the performance of our transductive kernel map learning (denoted
TKML) in image annotation and we compare it to closely related work. For that purpose, we
use two standard datasets for experiments and comparison. The MSRC dataset includes 591
images from 23 categories excluding the category “horse” (as it has a very low cardinality).
This dataset is divided into two subsets with equal cardinality; the first one is used for train-
ing and the other one for testing. Corel5K dataset contains 5000 images which are annotated
with 260 keywords and each image has up to 5 keywords. This dataset is divided into 4500
images for training and 500 images for testing.
Features. Images in MSRC and Corel5K are processed using a rectangular grid in order
to extract densely sampled SIFT features. These features are assigned to their nearest vi-
sual words using a trained codebook of size N (N = 512 in practice). Spatial information
is also considered using a three-level pyramid including 1× 1, 2× 2, 1× 3 cells, and one
bag-of-word histogram is computed for each cell. Consequently, each image is encoded by
a concatenated descriptor of length (1×1+2×2+1×3)N. In order to capture various vi-
sual informations, we combine various local features [44] including SIFT, rgbSIFT, rgSIFT,
hsvSIFT, cSIFT, opponentSIFT resulting into a final visual representation joining the six
SIFT features.
Learning and Annotation. Given training and test images, we define our neighborhood
system using an adjacency graph where each node corresponds to an image and an edge
connects two images if they are visually similar. Using this neighborhood system, we run
TKML in order to measure the membership of each keyword to different test images; these
memberships correspond to the scores of the underlying classifiers. A keyword is then as-
signed to a test image iff the score associated to that keyword is among the 5 largest values.
We also applied a variant of our TKML algorithm, that weights, for each keyword, the loss
of positive and negative data differently especially when they are unbalanced. This variant
is referred to as weighted TKML (wTKML). Our method uses following settings in all the
experiments: i) the smoothness term is γs = 1 , ii) the fidelity coefficient is γc = 1, iii) the
low-rank coefficient is µ = 10−8, iv) the convergence threshold is ε = 10−2, v) the max
number of iterations is 5, and vi) the max number of iterations for diffusion is 100. Graph
construction parameters, however, depend on data sets. For MSRC, the neighborhood size
k = 6, euclidean metric s(·, ·); for Corel5K, the neighborhood size k = 3, histogram intersec-
tion metric s(·, ·). More details about the setting of these parameters are given in [49].
Evaluation Criteria. Different evaluation criteria are used in order to measure the quality
of this annotation process including precision (denoted P), recall (denoted R) and positive
recall (denoted N+); these criteria are defined as

P = Eω

(number of images correctly annotated with a keyword ω

number of images annotated with ω

)
R = Eω

(number of images correctly annotated with a keyword ω

number of images annotated with ω in the ground truth
)

N+ = ∑ω 1{(number of images correctly annotated with a keyword ω) ≥ 1},

here the expectation Eω is with respect to all possible keywords {ω} in our dataset. We fur-
ther benchmark the quality of keyword assignment using break-even point (denoted BEP [20]),
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with

BEP = Eω

(number of images correctly annotated with a keyword ω in a sorted list of Nω images

Nω

)
here Nω is the number of images annotated with ω in the ground truth and the list of Nω

images is sorted by decreasing classification scores. By varying the size of the sorted lists
and taking the expectation of precision, with respect to this size, we obtain the mean average
precision (denoted mAP).

4.1 Performance & Comparison
Inductive methods. We consider 3 state-of-the-art methods for comparison: (i) SVM clas-
sifiers [45]; (ii) MKL via SMO-MKL [48]; (iii) structured SVM for multi-label classification
via M3L [22]. All of these methods are tested against four choices of kernels linear, RBF,
χ2, and histogram intersection. Parameters of each method are optimally tuned. For SMO-
MKL, we use SMO solver with `2 regularization. Note that SMO-MKL has been extensively
trained using 36 Gram matrices resulting from the combination of the 6 kernels (linear, χ2,
Histogram Intersection, and RBF with 3 bandwidth values) and the 6 descriptors mentioned
earlier. We use libSVM 2 as the standard implementation for SVM while M3L and MKL
implementations are taken from their original authors.
Transductive Methods. LapSVM [37] and TranSVM [26] are accounted for comparison.
While they are based on large margin approach, LapSVM is more related to our method
since both share smoothness regularization term. The two methods are also tested against
four choices of kernels mentioned above. The implementation of LapSVM is taken from
[37] and that of TranSVM from SVMlight 3.

Fig. 2 and Table 1 show results and comparison on the MSRC data set. A first conclusion
indicates that methods relying on labeled training data as well as unlabeled test data provide
better performance. The performance of our method, as shown in Fig. 2, is equivalent to the
top one, i.e., structured SVMs (M3L) even though the latter takes also into account label in-
teractions that help improving image annotation performance. Differences between methods
become clearer on the Corel5K database (see Fig. 3). As expected inductive methods (in-
cluding SVMs) perform worse than transductive ones and structured SVM (M3L) in terms
of recall and mAP. Better recall, mAP and N+ performances are obtained by our method
(wTKML) (see Fig. 3-right).

Finally, Table 2 shows results reported in the related work including the baseline JEC [36],
the sparse coding method in [53], the graph-based method in [33, 50] and the TagProp [21].
Compared to these state-of-the-art methods, our method is very competitive in at least three
out of the five evaluation criteria.

5 Conclusion
We introduced in this paper, a new transductive learning approach for kernel design and
multi-label classification. Our contribution resides in the variational framework that allows
us to explicitly design an “optimal” kernel map as a part of the learning process. When
compared to baseline inductive methods as well as related transductive ones, our approach

2http://www.csie.ntu.edu.tw/ cjlin/libsvm/
3http://svmlight.joachims.org/
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shows competitive performance on the challenging image annotation task.
As a future work, we will investigate the application of our method to other tasks including
interactive image retrieval.
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Figure 2: Image annotation performance w.r.t baseline methods on the MSRC database.
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Figure 3: Image annotation performance w.r.t baseline methods on the Corel5K database.

SVM M3L
MKL

LapSVM TranSVM
TKML wTKML

lin rbf hi χ2 lin rbf hi χ2 lin rbf hi χ2 lin rbf hi χ2

N+ 80 97 91 85 133 122 119 124 113 126 129 112 129 155 150 157 155 133 173
Table 1: This table shows the positive recall (N+) for different methods on the Corel5K
database. As for MSRC, all the keywords are recalled.
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BEP 17 - 36 34 34
mAP 26 42 42 42 46

Table 2: This table shows the performances (with different evaluation criteria) of our pro-
posed method and related work on the Corel5K dataset.
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