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Abstract

We present a pedestrian tracking system that uses re-identification to monitor non-
overlapping cameras. As tracking, re-identification is an assignment problem, the dif-
ficulties being to generate an accurate representation and to prune unlikely pairings.
The assignments are realised in two stages. First, a Markovian multi-target tracking-
by-detection framework which includes identification in the search space is run in the
cameras. This generates tracks in the cameras and a first assignment between them thanks
to the local identification. This solution is then optimized globally by a network super-
visor benefiting from coarse topology knowledge over a sliding window with MCMC
sampling. The tracking results obtained on a large ground-truthed dataset demonstrate
the effectiveness of the approach.

1 Introduction

In this paper, we present a novel approach to perform multiple objects tracking (MOT) and
re-identification on-the-fly, to monitor Non Overlapping Fields Of View networks (abbrevi-
ated NOFOV networks in the following).

Pedestrian tracking using a distributed NOFOV network offers the following advantages:
(i) larger areas can be covered with few sensors; (ii) existing camera infrastructure can be
exploited. The goal of MOT is then to cope with these discontinuities and to still guarantee
spatio-temporal consistency in the whole camera network. The problem becomes twofold:
beyond the image plane multi-target tracking, the system should be able to re-identify the
targets when they appear in a new camera and thus achieve a “handover” of identity from
one camera to another. This is called re-identification. The goal of fusing re-identification
and MOT is to be able to retrieve global identity trajectories in the NOFOV network.

An overview of the whole algorithm is given in Section 3 while the trackers and the
supervisor are detailed in Section 4 and Section 5 respectively. Experimental results are
reported in Section 6 and our conclusions are given in Section 7.
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2 Related Work
Pionneering works on MOT in the Computer Vision community started with sequential
logic and first order markovian model. Particle filtering algorithms’ interest for tracking
(CONDENSATION) have been established by Isard and Blake, notably for multiple targets
in [11]. Then, since [17], tracking-by-detection has emerged. The increased robustness of
deferred logic methods has been proven by Xing et al. in [19]. Among the current state-
of-the-art methods in terms of image plane multi-target mono-camera tracking we can cite
Benfold and Reid in [1] for tracklets temporal optimization and Breitenstein et al. in [3] for
Markovian methods. Both approaches are system-based and rely on a pedestrian detector
such as HOG [5].

In terms of pure re-identification, recent works have sought to build a good representa-
tion for pedestrians to yield a reliable similarity function. In that vein, [8] and [7] were the
first to propose to formulate it as a ranking problem, evaluating it with Cumulative Match-
ing Curves. Thus, [8] propose to train a classifier on the invariant parts during a camera
change, based on ground truth training pairs. The learned model focuses on the stable fea-
tures through camera change. Besides, Zheng et al. [20] put the effort on the distance match-
ing and proposed a probabilistic learned distance, trained to minimize the distance between
correct pairs. Again, the training is performed on ground truth pairs, i.e. assume to have
solved the problem for some samples. In opposition to these approaches, Farenzena et al. [6]
adopt an unsupervised approach, with no learning. They propose a robust fixed signature
based on symmetry and asymmetry of the appearance and well positionned colorimetric fea-
tures, added to mean color blob matching extracted by Maximal Stable Color Region, and
local texture patches. However, these methods are not designed for online application be-
cause of their important computation time and the need of ground truthed pairs as training
samples.

In a camera network, when targets’ trajectories present discontinuities due to the lack of
observability, e.g. between nonoverlapping cameras, applied pedestrian re-identification be-
comes a necessity. Huang and Russel [9] represent some early work for multi-camera track-
ing with non-overlapping fields of view. They formalized their car-reidentification problem
using association in a probability space built on similar target sizes and mean color. Then
Pasula et al. [18] proved the efficiency of MCMC sampling to explore the assignment space.
Some extra knowledge on the network can be learned, such the spatio-temporal correspon-
dances [14] or appearance relationship through brightness transfer functions [12].

Several recent works start to transfer the re-identification descriptors to application need-
ing online identification. In terms of embedded system, Matei et al. in [15] are on the par-
ticular problem of vehicle tracking in NOFOV networks. The linear motion model and the
constant speed allow them to draw out a novel Multiple Hypothesis Tracking formulation us-
ing kinematic and appearance features. On the contrary, Kuo et al. in [13] are concerned with
pedestrian. They adopt a similar re-identification approach as [8]. Finally, re-identification
is seen as a MAP problem and is solved by Hungarian Method enumerating every possibil-
ity at the end of the sequence. However the gathering of training samples relies on a weak
constraint and it is unclear how the approach can scale to multiple sensors as the number of
assignments to test grows exponentially.

From these insights, our two-layered tracking-by-reidentification approach exhibits the
following contributions. First, target re-identification within the network is achieved on-line
thanks to a mixed-state sampling exploring both image plane location and identity of the
current target. Second, this local identification is used as prior to an assignment optimization
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Figure 1: Synoptic diagram of the combination between markovian tracking-by-
reidentification and MCMC data association at the network level.

process benefiting from topology knowledge and achieved through MCMC sampling. This
final track assignment between cameras is performed in a deferred logic way on a sliding
window to ensure robustness.

3 Overview of the Approach

The overall synoptic diagram for the centralized/decentralized tracking algorithm presented
in this paper is described in figure (1). A NOFOV network is deployed to monitor some areas
of interest. We assume to know the topology of the network, i.e.which cameras can exchange
targets. We also assume to know from which areas (feeding areas) new people may enter in
the network. Then, the main steps of our algorithm are:

• At the camera level , automatic distributed trackers based on HOG detections and
following the approach of [3] track targets for each camera. Inspired by [6], the ap-
pearance model used is composed of horizontal stripes of HSV histograms weighted
by their distances to the symmetry axis. The use of topology allows to instantiate new
identities from the feeding areas in an identity database, which we compare with to
perform re-identification. The mixed-state formalism [16] uses that database and sam-
ple in this identity space. That way the tracker produce a tracklet and re-identification
probabilities in the database representing the belief of the tracker. The resulting track-
lets are sent to the supervisor along with their probabilities of identity, their time of
existence and their areas.

• At the network level, the supervisor resorts to deferred logic to optimize the assign-
ment between the received tracklets using re-identification distributions and network
topology information. The combinatorial space is efficiently explored through MCMC
sampling. Tracks output by the supervisor are optimized to represent the activity of
the same person.
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4 Local Tracking-by-Reidentification at the Camera Level

4.1 Detections Integration
4.1.1 Associations to Detections

An association matrix is built between trackers and detections. The score of pair detection d
vs. tracker tr given by equation (1), involves:

• the distance between the tracker’s particles and the detection, evaluated under a gaus-
sian kernel pN (.)∼N (.,σ2) ;

• the tracker’s box area A(tr) relatively to the detection’s one also evaluated under a
gaussian kernel ;

• the tracker’s appearance model score on the detection (wApp(.)) ;

• the identity models scores on the detection (wId(.)) weighted by the particle subsets
ϒ j as defined in equation 3.

S(d, tr) =
N

∑
p∈tr

pN (d− p)︸ ︷︷ ︸
euclidean distance

× pN

(
|A(tr)−A(d)|

A(tr)

)
︸ ︷︷ ︸

relative size

× wApp(d, tr)︸ ︷︷ ︸
appearance model

×
Nid

∑
j=1

ϒ j ·wId(d, j)︸ ︷︷ ︸
identities distribution

(1)

Thus, tracker and detection should present simultaneously a similar position, a similar
size, a similar colorimetric response, and the detection should resemble to the most likely
identities for the mixed-state tracker. Maxima are extracted iteratively with the Hungarian
Method [4].

4.1.2 Automatic Tracker Initializations / Terminations

Every temporally recurrent detection, which is not associated to any tracker, yields the in-
stanciation of a new tracker. On a similar manner, every tracker which has not been associ-
ated with a detection for a time period longer than the suppression threshold is stopped.

4.2 Mixed-state based Particle Filtering
4.2.1 Prediction Model

Each target initialized on a detection is tracked by a particle filter. Given the identity
database, we have extra reference descriptors to compare with. To do so, following [16],
we use Mixed-State CONDENSATION filters, introduced in [10]. We aim to estimate a mixte
state vector, composed of several continuous terms and a discrete one. X = (x, id)T, x ∈
R4, id ∈ {1, . . . ,Nid} The continuous part of the state x = [x,y,vx,vy]

T is composed of the
position in the image plane (x,y)T and of the speed vector (vx,vy)

T. The integer part id refers
to one of the Nid identities in the database. The tracking is conducted in the image plane,
and tracking box dimension is updated on the associated detections. The appearance model
is also updated on the associated detection. Given this extended state vector, the density of
sampling process at image t can be decomposed [10]:

where Ti j(xt−1) is the transition probability from identity i to j, applied to the discrete
identity parameter, and pi j(xt |xt−1) is the sampling applied to the continuous part. The

Citation
Citation
{Burgeois and Lasalle} 1971

Citation
Citation
{Meden, Sayd, and Lerasle} 2011

Citation
Citation
{Isard and Blake} 1998

Citation
Citation
{Isard and Blake} 1998



MEDEN, LERASLE, SAYD: MCMC TRACKING-BY-REIDENTICATION 5

transition matrix T = [Ti j] is built over the set of key-frames. The element Ti j is the similarity
wid(.) between identities i and j of the database, computed between the most different key-
frames. Particles are propagated according to a first order motion model.

4.2.2 Observation Model Integrating Detections

The weight w(p)
tr associated with the p-th particle of tracker tr is computed integrating the

distance to the associated detection d∗, the colorimetric similarity to the appearance model
wApp(.) and the colorimetric similarity to the identity of the particle wId(.). Id(p) represents
the identity taken by particle p. This is the discrete parameter of p.

w(p)
tr = α · I(tr) · pN (d∗− p)︸ ︷︷ ︸

distance to the detection

+β ·wApp(d, tr)︸ ︷︷ ︸
appearance model

+γ ·wId(d, id(p))︸ ︷︷ ︸
identity

(2)

where α , β and γ are weighting coefficients empirically set, and I(tr) is a boolean signifying
the existence or not of an associated detection to the tracker. As in [16], the introduction of
similarity relative to the identity in the particle weighting drives the particle cloud towards
the most likely identities given the received observations. In that way, each tracker maintains
a discrete distribution over the global identities, the modes of that distribution being the most
likely identities.

The state estimation is a two-stage process. First we compute the Maximum A Posteriori
over the discrete parameter relatively to the current observation Zt with equation (3), i.e. the
most likely identity at time step t.

ˆidt = argmax
j

P(idt = j|Zt) = argmax
j

∑
p∈ϒ j

w(p)
tr (t),where ϒ j =

{
p|X(p)

t = (x(p)
t , j)

}
(3)

Then, the continuous components are estimated over the subset of particles ϒ̂ which have
that most likely identity, following equation (4).

x̂t = ∑
p∈ϒ̂

w(p)
tr (t) ·x(p)

t / ∑
p∈ϒ̂

w(p)
tr (t),where ϒ̂ = {p|X(p)

t = (x(p)
t , ŷt)

T}

That way, on top of target image position estimation, each filter provides a discrete iden-
tity distribution for its target.

5 Global tracklet association at the network level

5.1 Problem Formulation
Let Y = {yk = (idsk, t in

k , tout
k ,ain

k ,a
out
k ),k = 1, . . . ,K} denote the set of K tracklets generated

by the mixed-state filters, where idsk is the identity distribution, t in
k and tout

k are time of ap-
pearance and disappearance and ain

k and aout
k are the areas of appearance and disappearance.

Unlike [15], we track pedestrians, i.e.without a priori motion, yielding completely unordered
duration of visibility. That is why, instead of fixing an unrelevant duration for the sliding
window, we wait for the supervisor to have gathered K tracklets before performing the data
association search.

Here we define the problem as given the observations Y , inferring N tracks at the net-
work level as composition of tracklets, where N is the number of identities wandering in the
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network, known from counting targets coming from feeding areas. Equation (4) summarizes
that, where τ0 is the set of false alarms, τn is the nth network track.

H = {τ0,τ1, . . . ,τN} (4)

Each τn in H is defined as a collection of camera tracklets. In our framework, the tracking
problem is formulated as maximizing a posterior (MAP) of a tracklet assignment given the
set of observations Y :

H∗ = argmax
H

(p(H|Y )) , where H ∼ p(H|Y ) ∝ p(Y |H)p(H) (5)

5.2 Likelihood Model

The likelihood model we propose p(Y |H) is composed by two terms: a topological part and
a mixed-state distribution result: p(Y |H) = PTopo(Y |H) ·PMSR(Y |H)

Figure 2: Topological graph of the testing network.

Topological Likelihood: Shortest paths on the graph are computed with Dijsktra algo-
rithm. As the cameras are static, the topology is fixed and these distances can be precom-
puted offline and stored in a database. Figure (2) displays our private network topology.

PTopo(Y |H) =
|τn|−1

∏
i=1

pN (dtopo(aout
i−1,a

in
i )), (6)

where dtopo(.) is the distance between two nodes of the topological graph, ain/out
i are the area

of beginning (resp. ending) of the i-th tracklet, pN (.) is a gaussian kernel to transform the
distance into a similarity between 0 and 1 and |τn| is the cardinal of the tracklet set τn.

Identities Distributions: In addition to topologic constraints we add appearance features.
However comparing directly descriptors yields an homogeneity problem. Indeed, descriptors
taken from the same camera may be more similar than from others, even if the target is
different. At that point some papers resort to color calibration, a heavy process to project
descriptors from different sensors in the same subspace. We use instead the mixed-state
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trackers belief on the tracklet identity, resulting from online comparison with the database
generated from the feeding area.

PMSR(Y |H) =
|τn|−1

∏
i=1

idsi(id), (7)

where idsi is the discrete probability distribution over the identity database for the i-th track-
let. That way idsi(id) represents the probability that tracklet i has the identity id.

5.3 Topologic and Appearance driven MCMC Data Association

Figure 3: Examples of the Swap and Id Switch moves used for MCMCDA between multiple
cameras (temporality is not represented).

We resort to the Metropolis Hastings algorithm to sample from equation (5). By design,
a series of reversible proposal moves yields a Markov chain that is irreductible, aperiodic,
and that converges to a stationnary distribution by the ergodic theorem. In our case, the
stationnary distribution π(H) is defined by equation (5.2), and the acceptance ratio for the
j-th iteration is computed as

p(H j← H∗) = min
(

π(H∗)q(H j−1|H∗)
π(H j−1)q(H∗|H j−1)

,1
)

(8)

The proposal distributions q(H,H ′) consist of two pairs of reversible moves as illustrated
in figure (3).

Id Switch Move: In an Id Switch move, one tracklet yswitch and one track τnew (different
from the track of yswitch) are chosen u.a.r. That way, yswitch goes from one track to another,
changing their lengths.

Swap Move: In a Swap move, two tracklets yi and y j from different tracks are chosen u.a.r
and are swapped.

6 Experimental Results
Considering the lack of public datasets in terms of NOFOV network, we evaluate the system
first on synthetic data to validate the supervisor part and then the whole system on a real
sequence on a NOFOV camera network.



8 MEDEN, LERASLE, SAYD: MCMC TRACKING-BY-REIDENTICATION

6.1 Tracking Performances
Table 1 presents quantitative results on the PETS’09 sequence. First, we validate our partial
implementation of [3] (without HOG + ISM detector, detector confidence use in the obser-
vation model, and Boosting Online based appearance model).

However, our approach presents an extra modality with the notion of global identity.
We show first that the introduction of mixed-state particle filtering does not decrease much
tracking performances. To do so, we compare MOTP and MOTA for our implementation
without and with the reidentification module activated. Then, this extra modality allow us to
compute TRR for the sequence. Finally, we compare the reidentification results of the dis-
tributed mixed-state filters alone against the supervised ones. There, exclusivity constraints
(section 5) yield improved results. The stochastic aspect of particle filtering has been taken
into account in our experiences: table 1 shows results averaged over ten repetitions of track-
ing.

Table 1: CLEAR MOT metrics tracking results [2] and true reidentification rates on the
monocamera sequence PETS’09 S2L1. We give here Multi-Object Tracking Precision
(MOTP), Multi-Object Tracking Accuracy (MOTA), and True Reidentification Rate (TRR).

Sequence PETS’09 MOTP MOTA TRR
Tracking-by-detection 56.3% 79.7% -

[3]
Tracking-by-detection 42.7% 77.9% -

implemented
Tracking-by-Reidentification 42.5% 77.7% 59.7%
Tracking-by-Reidentification 42.4% 75.9% 64%

supervised

6.2 Synthetic Data
We build a network graph and simulate targets random exploration of that graph. At each
intersection, the target chooses its destination with equiprobability between every possible
destination. The identity vectors are generated such that

ids(i) =
{

max(1−abs(εi),0) if i = idGT ,
min(abs(εi),1) else.

In both cases εi ∼N (0,σ2). That way, we build a pool of tracklets
Ysynth = {yk = (idsk, t in

k , tout
k ,ain

k ,a
out
k ),k = 1, . . . ,K} and we optimize it with our MCMC rou-

tine.
Figure 4 presents the results of a synthetic network with 30 cameras, and 10 to 40 iden-

tities wandering in it and 1000000 iterations of the Metropolis Hastings algorithm. Each
identity appears at most 20 times in the network, yielding at most 20 tracklets.

This part validates the supervisor task. Indeed, with wrong measurements coming from
the mixed-state filters (maximum value not on the ground truth identity), topology knowl-
edge allows to correct these errors.

6.3 Real Data issued from our NOFOV Network
The NOFOV sequence presents a total of 12 pedestrians wandering between 5 cameras.
Figure (5) gives an overview of the network. The dataset is 4000 frame-long and we plan
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Figure 4: Evolution of the True Reidentification Rate on the MCMC filtering over the syn-
thetic data in function of the gaussian noise on the identity vectors.

to release it publicly. The identity database is built at runtime using models of the trackers
starting in Cam0, entry area0. We compare here the method based only on colorimetric
information and particle filtering inspired by [16], with the supervised system we propose in
Section 5 which optimizes the tracklets with topological constraints.

Table 2 presents true re-identification rates of the supervisor applied to real data opti-
mizing the output of our tracking-by-reidentification module. Fusing topological constraints
with identities distributions allows our MCMC formulation to increase the assignment qual-
ity.

Table 2: True Reidentification Rates for each camera of the sequence NOFOVNetwork:
comparison of the approaches without, and with supervisor on the network.

NOFOV Sequence cam0 cam1 cam2 cam3 cam4
Tracking-by-Reidentification 88.7% 65.3% 58.5% 54.6% 54%
Tracking-by-Reidentification 90.6% 76.2% 68.2% 63.8% 62%

supervised

Unlike Kuo et al. [13] who perform a Hungarian Method to solve the tracklet assignment
at the end of the sequence, our approach provides reidentification at each time-step through
the mixed-state framework. This information is optimized when sufficient data is gathered.
Where they only precise how to treat a pair of cameras, our approach is directly scalable to
multiple sensors. Finally, figure 5 gives an overview of our system output. Left, the cameras
of the network display current tracks, and down right the reidentification are displayed.

Figure 5: Overview of the monitored network (see the video enclosed as supplementary
material).
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7 Conclusion
In this paper, we present a novel system to perform re-identification on-the-fly while track-
ing, to monitor NOFOV camera networks. We base our approach on a markovian tracking-
by-detection and we extend its distributed particle filters to also include a discrete identity
parameter in their search space and so re-identify the targeted person. The identity points
towards the database of targets present in the network, built from an entry area.

We derive a novel MCMC data association dedicated to NOFOV camera networks.
The local identification of the distributed mixed-state filters is fused with coarse topology
knowledge to yield the likelihood function of the MCMC data association. This paper is
among the first ones to propose a tracking dedicated appearance-based method for person
re-identification embedded in the tracking framework to monitor NOFOV camera networks.
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