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Abstract

Semantic image segmentation is a problem of simultaneous segmentation and recog-
nition of an input image into regions and their associated categorical labels, such as per-
son, car or cow. A popular way to achieve this goal is to assign a label to every pixel in the
input image and impose simple structural constraints on the output label space. Efficient
approximation algorithms for solving this labelling problem such as α-expansion have, at
best, linear runtime complexity with respect to the number of labels, making them prac-
tical only when working in a specific domain that has few classes-of-interest. However
when working in a more general setting where the number of classes could easily reach
tens of thousands, sub-linear complexity is desired. In this paper we propose meeting this
requirement by performing cascaded inference that wraps around the α-expansion algo-
rithm. The cascade both divides the large label set into smaller more manageable ones
by way of a hierarchy, and dynamically subdivides the image into smaller and smaller
regions during inference. We test our method on the SUN09 dataset with 107 accurately
hand labelled classes.

1 Introduction
Semantic image segmentation (SIS) is a problem of simultaneous segmentation and recogni-
tion of an input image into regions and their associated categorical labels, such as person, car
or cow. A popular way to achieve this goal is to assign a label to every pixel in the input im-
age and impose simple structural constraints on the output label space. Such approaches have
been successfully formulated as pairwise conditional random fields (CRF) [20] and higher or-
der CRFs [14, 16]. These approaches are now practically solvable for some problems due to
advances in inference techniques [8, 11, 15]. Currently the α-expansion [2] algorithm has
proved to be perhaps the most efficient approximation algorithm for the SIS problem and is
amongst the state-of-the art for quantitative performance [6, 16]. Empirically the algorithm’s
runtime is linear in the number of labels, making it practical only when working in a spe-
cific domain that has few classes-of-interest (10−20 for example). However when working
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Figure 1: Image Label Domains: Taking the domain of labels from all the groups of de-
picted ground truth images together gives many labels, but each group has a smaller subset,
and each image has yet a smaller subset of labels from its group. In fact the SUN09 dataset
has only seven labels on average per image, and the full domain of labels is 107. This makes
using a cascade, that can reject sets of labels, an attractive approach for scaling up the infer-
ence methods for semantic image segmentation to many labels.

in a more general setting where the number of classes could easily reach tens of thousands
[5], sub-linear complexity is required. In this paper we propose to meet this requirement by
dividing the large label set into smaller more manageable ones, and then only solving for
some of these subsets. Since the SIS problem is concerned with categorical labels a natural
way to subdivide the label set is by building a hierarchy, or taxonomy. Given a hierarchy
we propose a cascade architecture that can reject whole portions of the label space at the
early stages of the optimisation, which could be considered a type of energy-aware variable
selection process [13]. We also dynamically subdivide the image into smaller and smaller
regions during inference to gain further efficiency. The use of a cascade is motivated by the
observation that even with a large label domain, a single image will usually only contain a
small subset of classes. This can easily seen by viewing Fig. 1 where three sets of manually
labelled images are shown, that have a variety of object classes. Even though over all the
groups there is a relatively large number of classes there is no image with more than seven
labels. We demonstrate the effectiveness of the approach with quantitative evaluation of per-
formance on the SUN09 database [4] that has 107 labels. This dataset has the largest number
of classes hand labelled by a single expert (as opposed to LabelMe [18]) for the semantic
image segmentation application, making the ground truth of a high quality. Some examples
can seen in Fig. 1 and Fig. 3.

2 The Potts Labelling Problem for Semantic Image
Segmentation

The labelling over an undirected graph, G(V,E), is defined as the function f : V → ∆|V |,
where ∆ is a discrete label set, or domain, with associated metric distance d : ∆×∆→ [0,1].
In SIS, ∆ is a categorical set of labels such as car, van and horse, and each vertex is associated
with a pixel in the image. An assignment cost c(v, l) is specified for each vertex v ∈ V and
label l ∈ ∆. The cost of the solution f : V → ∆|V |, denoted Q( f ), consists of the assignment
cost and a set of edge weights w, that typically enforce consistency between a group of
vertices. For SIS these groups usually consist of a set of 4 or 8 nearest pixel neighbours. The
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overall cost that is to be minimised is given by:-

minimize:

Q( f ) = ∑
v∈V

c(v, f (v))+ ∑
(u,v)∈E

w(u,v) ·d( f (u), f (v))

subject to:

(1)

f : v→ α ∀v ∈V, ∃α ∈ ∆

d(α,α) = 0 ∀α ∈ ∆

d(α,β ) = d(β ,α)≥ 0 ∀α,β ∈ ∆

d(α,β )≤ d(α,γ)+d(γ,β ) ∀α,β ,γ ∈ ∆,

w(u,v)≥ 0 ∀u,v ∈V.

We say that f ∗
∆

is a local minimum for a Potts labelling problem that has been defined on the
domain ∆ and variables V .

Potts Distance Metric: In SIS it is important to preserve object boundaries so the metric
distance function d( f (u), f (v)) that we use is the Potts model:

d( f (u), f (v)) =
{

0 if f (u) = f (v),
λ otherwise. (2)

The function w(i, j) is an edge feature based on the difference in colours of neighbouring
pixels [1], typically defined as:

w(u,v) = θp +θv exp(−θβ ||Iu− Iv||22), (3)

where Iu and Iv are the color vectors of pixel u and v respectively. θp, θv, θβ ≥ 0 are model
parameters learned using training data. We refer the interested reader to [1, 17, 20] for more
details. The Potts labelling problem is a specific case of a general Markov, or Conditional
Random Field, that is particularly useful for SIS due to its edge persevering properties that
are important at occlusion boundaries of objects.

3 Cascaded Inference
In order to obtain scalable SIS we propose a to perform cascade style inference as depicted
in Fig. 2. In this section we specify the details of our approach. First we define two general
functions:

variable selection Tδ : V →V ′,

variable assignment TV : δ → δ
′,

that can be applied respectively to the variables (vertices) and the label domain of the cost
function Q Eq. 1; Tδ transforms the current set of variables, given a domain; TV modifies
the current domain, given some variables. We can specify these transformation functions in
different ways such that their evaluation performs a move for many move making algorithms,
such as α-expansion and αβ -swap [2], γ-expansion [10], and multilabel-swap [3]. Here we
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Figure 2: Cascaded Inference:(a) shows our cascade inference on a test example from the
SUN09 dataset. Our cascade is able to reject large portions of the large label space resulting
in sun-linear complexity at run-time. (b) shows the raw input image. (c) is the hand labelled
ground truth and (d) is our final output after combining the results at the leaf nodes of the
tree

are interested in specifying them in order to perform cascaded inference over a tree structured
label space, or taxonomy τ . We define such a space with reference to an unstructured domain
∆ as recursive subdivision into disjoint subsets δ such that the root node contains all the
elements of ∆ and leaf nodes contain the elementary labels l ∈ ∆. Now, let δ denote a group
of siblings, that is a set of children that share the same direct parent in the tree and thus
forms a sub-domain of ∆. Also let π(δ ) signify the domain that the shared parent belongs to,
i.e. If the domain ∆ = {cat,dog,car,van}, then we could have the following groupings that
form our tree; The head node would be everything = {cat,dog,car,van} and it may have
two children, such as animal = {cat,dog} and vehicle = {car,van}. In turn these would
then have two leaf nodes as children. Then π(vehicle) points to the domain everything
and π(dog) points to the label domain {cat,dog}. Thus a tree defines a set of domains
{δ1, ...δn+1}, where n is the number of sibling groups. For convenience we also maintain an
index δ

j
i to the jth elementary label contained within the ith domain, i.e. vehicle1 = car, as

does everything3. Given these notations variable selection and assignment based on a tree is
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then defined as:

Tv(δ ) =

{
δi if δ

j
i ∈ f ∗

π(δ ) and δ 6= /0
/0 otherwise,

(4)

Tδ (v) = v ∈ {I( f (Tδ (v)) 6= inf} (5)

where /0 is the empty set, I is an indicator function, f ∗
π(δ ) is a given solution for the a labelling

problem defined on the domain π(δ ) and variables V ′ and

f (Tδ (v)) =
{

cτ(v, f (v)) if f (v) ∈ δ

∞ otherwise , (6)

cτ(v, f (v)) = arg min
f (v)∈δi

c(v, f (v))). (7)

For the first layer of the tree f ∗
π(δ ) is trivial since π(δ ) is the single label domain of the head

node, i.e. f : V → [1]. This means that we have to solve a k label problem at the start of our
cascade, where k is the number of children of the head node. In our running example this
would be the {animal,vehicle} domain on all variables V of the original graph. However
when we visit all the nodes in the tree in the following fashion:-

for all i minimize:

Q( f ) = ∑
v∈Tδi

(v)
cτ(v, f (v))+ ∑

(u,v)∈E ′
w(u,v) ·d( f (u), f (v))

subject to:

(8)

f : v→ α ∀v ∈ Tδi , ∃α ∈ Tv

d(α,α) = 0 ∀α ∈ Tv

d(α,β ) = d(β ,α)≥ 0 ∀α,β ∈ Tv

d(α,β )≤ d(α,γ)+d(γ,β ) ∀α,β ,γ ∈ Tv

w(u,v)≥ 0 ∀u,v ∈ Tδi ,

many sub-problems will be trivial such as:- no labels, |δ | = /0; a single label |δ | = 1; no
finite cost variables ∀v ∈ Tv : c(v, fδ (v)) = ∞. In these cases, we need not evaluate the func-
tion at all, saving computation time. In the cases where the cost is non-trivial with binary
δ = {α,β}, or a multi-class domain with |δ | > 2 and ∃v ∈ Tv : c(v, fδ (v)) 6= ∞. The cost
function remains metric since we only modify the data term c(., .) [3], thus we can approxi-
mately solve it using α-expansion or other suitable methods. We show in 4 that our cascaded
approach achieves a good approximation, Q(

⋃
i∈lea f s Q( f ∗

δi
))≈ Q( f ∗

∆
).

4 Empirical Evaluation
Dataset We are working in a fully supervised setting, so our experiments are performed
on the 10,000 image subset of the SUN09 dataset [4]. The dataset has a sufficient amount of
fully labelled per-pixel ground truth for a large set of 107 object classes. This is the same set
as used for the experiments in [4]. We processed the polygon based layered representation
to a single layer using the simple heuristics outlined in [18] as many images in the SUN09
dataset contain overlapping polygons. Examples of the dataset can be seen in Fig. 3 and
Fig. 1.
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Figure 3: Select Qualitative Results: (a) shows some of the original images in the SUN09
test set, that are varied in content. (b) shows the partitioning of the image at the top level
of feature sharing hierarchical clustering with around 11 labels per sub-domain. (c) shows
the final output of our cascade. (d) The hand labelled ground truth images from the SUN09
dataset. The bottom two rows show some failure cases

Tree There number of possible k-ary tree’s that can be generated from an n-label problem
is exponential. This makes it infeasible to try all possible tree’s and thus here we rely on
prior knowledge. First we split our label set into roughly equally sized partitions, to give
a balanced tree. In practice α-expansion has been demonstrated for SIS labelling problems
with cardinality of around ten labels so we use this as our maximum node size. This then
leads to a simple 2-layer tree. In order to decide which labels to group we use two common
techniques. The first is the use of our own expert knowledge to manually group the labels,
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denoted CascALE Expert. For the second tree we experiment with one based on visual simi-
larity. To measure the visual similarity between different object classes we re-use the feature
sharing matrix found whilst training the unary potentials with the joint-boost algorithm [21],
denoted CascALE Sharing. We first find the ten classes with the most shared features and
create ten clusters. Then we greedily add the other classes by visiting each cluster in a round
robin fashion and add in the class that shares the most features with the current cluster. We
do this until all classes have been assigned to a cluster.

Figure 4: Effects of tree depth: (a) shows how the depth of our cascade effects its runtime
on the full 107 labels. (b) shows how a flat approach scales as we increase the domain
cardinality. Interestingly we see that the two graphs have similar trends. This indicates that
we predict the runtime of our proposed cascade based on the number of labels and the depth
of the tree.

Empirical Runtime We evaluated the our cascade in terms of efficiency with random
tree’s ranging in depth. Fig. 4 shows how the flat models runtime complexity grows lin-
early with the number of labels and that our approach grows linearly with the size of the
sub-domains.

Empirical Accuracy In order to evaluate the effectiveness of our approach we compare
to two baselines, the first being the contextual model of Torralba [4]. We use this as a
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Method Global Recall VOC mean time secs
Torralba 33.0 10.6 6.2 -
ALE [19] 53.6 17.4 10.7 78
CascALE Expert 49.3 16.7 10.0 6
CascALE Sharing 52.8 15.2 9.6 4

Figure 5: Global Results This table shows how our method compared to state-of-the-art
approaches

baseline as it frames our results well with respect to a very different method of performing
recognition. They tackle the problem as one of bounding each object with a box, a.k.a, object
detection [9]. In order to compare we take each bounding box as a segment and use layering
heuristics to deal with overlapping regions, this follows the procedure of VOC challenge
for evaluating detectors for SIS [7]. Our cascade essentially approximates inference over
a pairwise cost function, this can be trivially extended to work with a higher order model
AHCRF [16] that is amongst state-of-the art for the SIS problem [7] (In fact we implement
our method as a wrapper around their publicly available ALE1 library). This then gives us a
strong second baseline to compare to that is competitive to with detector based approaches.
We report the performance on global number of correct pixels, recall, and accuracy (a.k.a
intersection-union (VOC) [12]) measures speed per-image and the averages over the whole
dataset in Fig. 5. We also show close up of per-class recall over all the labels and the average
recall per image over the whole test set in Fig. 4 as well as qualitative results in Fig. 3.

5 Conclusion
In this paper we have proposed a scalable cascaded inference method for the semantic im-
age segmentation problem. The proposed approach is predictable in its runtime performance
allowing the tree depth to be specified in advance given the available computational power.
Also the per-class recall of our scalable approach is on par with the much less scalable flat
approach. Our algorithm performs well due to the nature of scenes, that is that the usually
only contain a few select categories. We exploited this by allowing many labels, and whole
domains of labels to be rejected, furthermore we get a real boost by simultaneously parti-
tioning the image space, and allowing different partitions to take on different sub-domains.

This work is supported by the IST Programme of the European Community, under the PASCAL2 Network of
Excellence, IST-2007-216886. P. H. S. Torr is in receipt of Royal Society Wolfson Research Merit Award.
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