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Abstract

Algorithms for finding the maximum amount of flow possible in a network (or max-
flow) play a central role in computer vision problems. We present an empirical compari-
son of different max-flow algorithms on modern problems. Our problem instances arise
from energy minimization problems in Object Category Segmentation, Image Deconvo-
lution, Super Resolution, Texture Restoration, Character Completion and 3D Segmen-
tation. We compare 14 different implementations and find that the most popularly used
implementation of Kolmogorov [5] is no longer the fastest algorithm available, especially
for dense graphs.

1 Introduction

Over the past two decades, algorithms for finding the maximum amount of flow possible in
a network (or max-flow) have become the workhorses of modern computer vision and ma-
chine learning – from optimal (or provably-approximate) inference in sophisticated discrete
models [6, 11, 27, 30, 32] to enabling real-time image processing [38, 39].

Perhaps the most prominent role of max-flow is due to the work of Hammer [23] and
Kolmogorov and Zabih [27], who showed that a fairly large class of energy functions – sum
of submodular functions on pairs of boolean variables – can be efficiently and optimally
minimized via a reduction to max-flow. Max-flow also plays a crucial role in approximate
minimization of energy functions with multi-label variables [4, 6], triplet or higher order
terms [26, 27, 35, 37], global terms [30], and terms encoding label costs [11, 32].

Given the wide applicability, it is important to ask which max-flow algorithm should be
used. There are numerous algorithms for max-flow with different asymptotic complexities
and practical run-time behaviour. For an extensive list, we refer the reader to surveys in the
literature [2, 7]. Broadly speaking, there are three main families of max-flow algorithms:

1. Augmenting-Path (AP) variants: algorithms [5, 13, 14, 17, 21] that maintain a valid
flow during the algorithm, i.e. always satisfying the capacity and flow-conservation
constraints.
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2. Push-Relabel (PRL) variants: algorithms [8, 20] that maintain a preflow, i.e. satisfy the
capacity constraints but may violate the conservation constraints to have flow excess
at nodes (but never a flow deficit).

3. Hochbaum’s Pseudoflow (HPF) variants: algorithms [7, 24] that maintain a pseud-
oflow, i.e. satisfy the capacity constrains but may violate the conservation constrains
to allow flow excess and deficit at nodes.1

Boykov and Kolmogorov [5] compared AP and PRL algorithms on a number of computer
vision problems, and found that their own AP algorithm was the fastest algorithm in practice,
even though they could only prove a very loose asymptotic complexity bound of O(n2mC),
where n is the number of nodes, m is the number of edges and C is the value of the max-flow.

Goal. The central thesis of this work is that since this comparison a decade ago, the models
used in computer vision and the kinds of inference problems we solve have changed sig-
nificantly. Specifically, while [5] only considered 4-connected grid MRFs, the models today
involve high-order terms [26], long-range connections [31], hierarchical MRFs [28] and even
global terms [30]. The effect of all these modifications is to make the underlying max-flow
graph significantly denser, thus causing the complexity of the algorithm of [5] to become a
concern. It is time to revisit this comparison.
Contribution. The goal of this paper is to compare the runtimes of different max-flow
algorithms, to investigate if the conclusions of Boykov and Kolmogorov [5] are still valid for
current-day dense problems, and find out which algorithm is most suited for modern vision
problems. One key contribution of our study is that it includes recently proposed algorithms
– Pseudoflow [7, 24] and Incremental Breadth-First-Search (IBFS) [21] – which were not
developed at the time [5] was written, and thus were absent from their comparison. At a
high-level, we hope that the results of our study guide practitioners in picking the correct
implementation for their problems.
Scope of the Comparison. In order to perform a controlled thorough analysis, we need to
set limits on the scope of our comparison. We restrict ourselves to exact sequential max-flow
solvers evaluated on energy minimization problems arising in computer vision. Specifically,
we do not consider approximate max-flow solvers [9, 19]. Perhaps more importantly, we do
not compare multi-core implementations [10, 33], distributed implementations [22, 33], or
GPU implementations [25, 40]. However, the scope of our comparison is wide enough to be
useful to a large number of practitioners.
Paper Organization. Section 2 describes previous max-flow comparisons; Section 3 de-
scribes preliminaries and relevant background; Section 4 describes our experimental setup
and comparisons; Section 5 concludes with a discussion about our findings.

2 Related Comparisons
Experimental comparisons of max-flow algorithms have typically been performed outside
the scope of computer vision and machine learning [2, 3, 12]. To the best of our knowledge,
most existing comparisons are lacking in one way or another. Cherkassky and Goldberg [8]
compared Dinic’s AP algorithm [13] with variants of PRL [20], but did not compare to HPF
or the IBFS algorithms. Boykov and Kolmogorov [5] compared their own proposed algo-
rithm BK with Dinic’s algorithm and PRL but not HPF or IBFS. Chandran and Hochbaum [7]

1Interestingly, the key difference between Push-Relabel and Pseudoflow algorithms is not the concept of pseud-
oflow rather the admissibility of certain push schemes. See Section 3 for details.
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compared BK, PRL and HPF but not IBFS. Goldberg et al. [21] compared BK and IBFS,
but neither PRL nor HPF. Most related to our comparison is the (as yet) unpublished study
of Fishbain et al. [16], but it does not compare IBFS either. Moreover, [16] suffers from the
same problems as the study of Boykov and Kolmogorov [5] – it fails to test on modern vision
problems with higher order factors and dense graphs with long-range connections.

3 Background: Max-Flow and Algorithms

In the interest of being self-contained, we now give a brief background of max-flow and
the main families of the algorithms. Due to space limitations, we only provide a high-level
overview of the algorithms and refer the reader the to respective publications for details.

Notation

For any positive integer n, let [n] be shorthand for the set {1,2, . . . ,n}. Let G = (V,E) be a
directed graph over n nodes, i.e. V = [n], E ⊆ {(i, j) | i, j ∈ V, i 6= j} Let s, t be two special
nodes called source and sink respectively. Moreover, let C = {ci j | (i, j) ∈ E , ci j ≥ 0} be a
set of positive integer capacities at edges.

A feasible flow in graph G is a positive number for each edge i.e. f : E → R+, such
that it satisfies capacity constraints fi j ≤ ci j, and conservation constraints: ∑(i, j)∈E fi j =

∑( j,k)∈E f jk, ∀ j ∈ V \{s, t}. The value of a flow is defined as the total outgoing flow from
the source: v = ∑(s,i)∈E fsi. A preflow is a flow vector that satisfied the capacity constraints,
but may have more net incoming flow than outgoing flow, i.e. ∑(i, j)∈E fi j −∑( j,k)∈E f jk ≥
0 ∀ j ∈ V \ {s, t}. The excess at a node j is defined as the total incoming flow minus the
outgoing flow, i.e. ex( j) = ∑(i, j)∈E fi j−∑( j,k)∈E f jk. We will refer to a positive excess as a
surplus and a negative excess as a deficit. A pseudoflow is a flow vector that satisfies the
capacity constraints, but may have both positive and negative excess, i.e. may violate the
conservation constraints in any way. A node with strictly positive excess is called a strong
node, and nodes with deficit (or zero excess) are called weak nodes.

Given a flow vector satisfying capacity constraints, the set of residual arcs is given by
R = {(i, j) | (i, j) ∈ E , fi j < ci j OR ( j, i) ∈ E , f ji > 0}, i.e. forward arcs with flow strictly
less than the capacity or backward arcs with capacity strictly greater than 0. The graph in-
duced by these residual capacities, GR = (V,R), is known as the residual graph. Moreover,
the residual capacity of a residual arc (i, j) is given by c̃i j = ci j− fi j if (i, j)∈ E and c̃i j = f ji
if ( j, i) ∈ E . An arc (i, j) ∈ E is said to be saturated if c̃i j = 0, and free if 0 < fi j < ci j.

Max-flow. Given an input graph G and edge-capacities C, the max-flow problem asks for a
feasible flow of maximum value.

Broadly speaking, there are three main families of max-flow algorithms: Augmenting-
Path, Preflow-Push, and Pseudoflow algorithms. We now give a brief overview of the three
families, and the particular algorithms we compare in our study.

Augmenting-Path (AP) Variants

AP algorithms are primal feasible algorithms that maintain a feasible flow throughout the
execution of the algorithm. They iteratively search for s-t paths in the residual graph and
push the minimum capacity of arcs on this path (bottleneck capacity) from source to sink.
The algorithms terminate when no more s-t paths can be found.

Citation
Citation
{Goldberg, Hed, Kaplan, Tarjan, and Werneck} 2011

Citation
Citation
{Fishbain, Hochbaum, and Mueller} 2010

Citation
Citation
{Fishbain, Hochbaum, and Mueller} 2010

Citation
Citation
{Boykov and Kolmogorov} 2004



4 VERMA, BATRA: MAXFLOW REVISITED

Dinic’s algorithm (DF) [13] used breadth-first search to find the shortest s-t and achieved
the worst case running time of O(n2m). Boykov and Kolmogorov [5] presented an algorithm
(BK) that built search trees from source and sink to find s-t. paths. Although the algorithm
has only a pseudo-polynomial runtime bound of O(n2mC) and no known polynomial time
bound, it is very efficient in practice and outperformed all other methods in their study.
More recently, Goldberg et al. [21] have presented an improved version of BK that is based
on incremental breadth-first search (IBFS). IBFS has a worst case guarantee of O(n2m) and
seems to empirically perform better than BK.

Push-Relabel (PRL) Variants

Push-Relabel algorithms [8, 20] are dual feasible algorithms; they do not maintain a feasible
flow, rather a preflow. Thus nodes may have a flow surplus. The algorithms maintain a
labelling for every node d(i), ∀i ∈ V . If d(i)< n, then d(i) is a lower bound estimate of the
distance from node i to sink in the residual graph. If d(i) ≥ n, sink is no longer reachable
from i, and n−d(i) denotes a lower-bound on the distance to the source. The labels for s, t
stay fixed at n and 0 respectively. The algorithms are typically initialized by saturating all
outgoing arcs from the source, i.e. by setting fsi = csi, ∀(s, i) ∈ E , and labelling all nodes as
0. An iteration of the algorithm consists of performing one of two basic operations: push
and relabel. The push operation involves selecting a strong node and pushing flow from it
to a neighbour with lower label. If no such neighbour exists, then the relabel operation is
applicable – it increases the label of such a node by 1. Phase 1 of the algorithm terminates
when all strong nodes have labels d(i)≥ n, i.e. when no more excess flow can be transferred
to the sink. At this point, an s-t cut in the graph can be extracted. Specifically, the source set
consists of all nodes with labels d(i)≥ n. Phase 2 of the algorithm transforms this maximum
preflow into a maximum flow by sending surplus flow back to the source (via the same basic
operations push and relabel).

As with AP algorithms, the efficiency of push-relabel algorithms depend on the order in
which the basic operations are performed. Goldberg and Tarjan [20] showed that a generic
version of the algorithm that does not order these operations in any smart way runs in O(n2m)
time. Moreover, two faster variants were proposed: highest-label-first, and first-in-first-out
(FIFO). The highest-label-first variant always choses a strong node with the highest label for
processing and can be shown to run in O(n2√m) time. The FIFO variant maintains a queue
in which strong nodes enter from the back and popped from the front. This variant runs in
O(n3) time.

Pseudoflow (HPF) Variants

Pseudoflow algorithms [7, 24] share a number of characteristics with push-relabel. They
too are dual feasible algorithms and do not maintain a feasible flow, rather a pseudoflow.
They too proceed in two phases: the first phase finds an s-t cut and the second phase extracts
the maximum feasible flow from the current pseudoflow. Pseudoflow algorithms maintain
a few invariants throughout Phase 1. First, all source-outgoing and sink-incoming arcs stay
saturated. Second, the free arcs do not contain any cycles. This induces a forest with multiple
components. Third, only nodes with strictly positive or negative excess are the roots of these
components. If the root is strong, the component is called a strong component, and if the
root is weak the component is called a weak component. In each iteration, the algorithm
attempts to find a residual arc from a node in the strong component to a node in the weak
component. If such an arc does not exists the algorithm finishes Phase 1. It can be shown
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that in each iteration, either the total excess of strong nodes is strictly decreased or at least
one weak node becomes a strong node.

Contrast.

At a high-level, augmenting path algorithms perform completely “global” operations, i.e.
search the residual graph to find a complete s-t path and push flow along this entire path,
while push-relabel algorithms perform completely “local” operations, i.e. only push flow
along single edges towards nodes closer to sink. Pseudoflow algorithms lie somewhere in
between by maintaining components of nodes. Moreover, the key difference between pseud-
oflow and push-relabel algorithms is that pseudoflow algorithms allow for flow to be pushed
between two nodes at the same label, while push-relabel algorithms do not.

4 Experimental Setup

We now describe our experimental setup in detail.
Problems. We tested a number of max-flow algorithms on the following problems:

1. Synthetic. We constructed 10 synthetic 2-label segmentation graphs, where we started
with a basic grid structure and randomly added long-range edges depending on a den-
sity parameter. The edge-capacities were sampled from Gaussians.

2. ALE Graphs. The Automatic Labeling Environment (ALE) of Ladicky et al. [29] im-
plements the Associative Hierarchical CRF framework of Ladicky et al. [28], which
achieved competitive results in recent years’ PASCAL object category segmentation
challenges. ALE includes many kinds of potentials: unary potentials based on tex-
tonboost features, Pn Potts terms (between superpixel nodes and pixel nodes) and a
global co-occurrence potential [30]. Inference in ALE is performed with graph-cuts
(BK) based alpha-expansion. We ran ALE on 10 images from PASCAL VOC 2010
segmentation dataset [15] and modified the code to save max-flow graphs in each iter-
ation of alpha-expansion resulting in 337 graphs.

3. Deconvolution. Given a blurry and noisy (binary) input image the task in image de-
convolution is to reconstruct the original sharp image. We use the “CVPR” instance
from [36]. Given an n×n blur-kernel, the MRF connectivity is (2n−1)× (2n−1)−
1. For a 3x3 blur-kernel, this model contains ∼45,000 triplets, and for a 5x5 blur-
kernel ∼450,000 triplets. This is an extremely dense graph and the problem is not
submodular. We saved the QPBO graph to file and ran all methods on this graph.

4. Super Resolution. The goal in image super resolution is to predict a high-res image
given a low-res image. Freeman [18] showed how to formulate this as a labelling
problem on patches, where the labels index into a dictionary of patches. We use the
models of [36], and again saved the QPBO graphs to file.

5. Texture Restoration. In this task, the goal is to denoise a noisy texture image. We
used the Brodatz texture D103 model from [36] and again saved the QPBO graphs.

6. DTF Graphs. Decision Tree Field (DTF) [34] is a recently introduced model that
combines random forests and conditional random fields. DTF models tend to in-
volve particularly difficult inference problem. We used the 100 instances provided
by Nowozin et al. [34] and saved the QPBO-graphs to file.
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7. 3D Segmentation. Finally, we also evaluated all algorithms on the standard bench-
mark for such studies, the binary 3D (medical) segmentation instances from the Uni-
versity of Western Ontario http://vision.csd.uwo.ca/maxflow-data/.

We note that all of the previous studies have been restricted to 3D segmentation, and prob-
lems 2-6 have never been used to evaluate max-flow algorithm, yet these are in some sense
more representative of modern problems.

Implementations. We compare the following implementations:

1. Augmenting-Path (AP) variants.

• Dinic’s algorithm (DF) [13]: We used the C implementation provided by Gold-
berg http://www.avglab.com/andrew/soft.html.

• Boykov-Kolmogorov (BK): We used the C++ implementation provided by Kol-
mogorov http://pub.ist.ac.at/~vnk/software/maxflow-v3.02.src.
tar.gz.

• Incremental Breadth First Search (IBFS). We used the C++ implementation pro-
vided by Hed http://www.cs.tau.ac.il/~sagihed/ibfs/.

2. Push-Relabel (PRL). For sake of completeness, we used two different C implemen-
tations of PRL provided by Goldberg http://www.avglab.com/andrew/soft.

html – called PRF and HIPR. PRF uses both highest-label first and FIFO push order-
ings, with and without certain relabeling heuristics (see [8] for details), and results in
4 variants H-PRF, M-PRF (highest-label first) and Q-PRF, F-PRF. Within the HIPR
implementation, the choice of preflow initialization seems to matter, resulting in three
different variants HIPR-New, HIPR-Old and HIPR-Wave (see [8] for details).

3. Pseudoflow. We used the C++ implementation provided by Chandran and Hochbaum
http://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html,
and compared the following variants: highest-label-first (HI) and lowest-label-first
(LO) processing of root nodes; and FIFO and LIFO ordering of roots among roots of
same label. This resulted in 4 variants: HPF-HI-FIFO, HPF-HI-LIFO, HPF-LO-FIFO
and HPF-LO-LIFO.

In total, we compared 14 (3AP+7PRL+4HPF) different algorithm-variant pairs.
Common setup All implementations were converted into C++ and we wrote a common
interface. For all experiments, we saved the max-flow problems in a standard DIMACS file
format [1], which was then fed as input to all methods. PRL and HPF implementations
already contained DIMACS readers, but for BK and IBFS this was written by us.

In each experiment, we measured the following quantities: time taken to read input files
(read-time); time taken to initialize internal graph representations and other data-structures
(init-time); time taken to compute the max-flow (maxflow-time). The read-time was ap-
proximately the same for all methods and is thus not reported. Different methods use vastly
different internal representations and the init-time varied between families of algorithms.
Note that PRL and HPF methods first compute a cut and then compute the max-flow. For a
number of vision problems, the cut is of principal interest and not the actual flow values. In
such applications, one would expect further saving over the maxflow-time. However, these
reductions for all our experiments were a very small fraction of the maxflow-time, and we
do not report them here.

All experiments were performed on a 64-bit 4-core 1.6 GHz Intel(R) Core i7 GNU/Linux
machine with 8GB RAM. All times were measured via the C++ clock() function that
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Time.
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(d) Deconv: Maxflow+Init Time.
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(a) 3Dseg: Maxflow
Time.
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(b) 3Dseg:
Maxflow+Init Time.
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(c) 3Dseg: Maxflow
Time.
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(d) 3Dseg: Maxflow+Init Time.

Figure 1: Run-time vs Density Plots: (a) and (c) show maxflow times alone, while (b) and (d) show
maxflow+initialization times. (a) and (b) show a subset of algorithms, while (c) and (d) show all 14.

measures process time with a typical resolution of 1 millisecond. Higher resolutions in
measuring time are possible with other (non-portable) functions but none of our comparisons
required such fine resolution.

5 Results

Fig. 1,2,3 show the results of all our comparisons. We try to cluster the results so that a
meaningful picture might emerge.

Fig. 1 compares run-time as a function of some measure of “density” of the graphs. For
synthetic graphs, we can directly control the number of edges present. However, for other
applications we cannot directly change the density of the max-flow graphs; thus we resort
to varying some secondary application-specific quantities that ultimately result in increased
density of the max-flow graph. For ALE graphs, we varied the number of superpixels lay-
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ers used by ALE, which increases the number of Pn-Potts terms, thus ultimately increasing
the density. For Deconvolution, we vary the filter-size from 3x3 to 5x5, which significantly
increases the density of the graph. For 3D segmentation, we vary the neighbourhood con-
nectivity from 6 neighbourhood to 26 neighbourhood, which also increases the density. The
synthetic results are averaged over 10 graphs and ALE results over 22 graphs (all alpha-
expansion iterations of 1 image). In order to clearly see the curves, we show two sets of
plots: one containing all 14 methods, and another containing just DF, BK, IBFS, HIPF-New
and HPF-HI-FIFO, which are overall the most competitive variants.

For problems where we could not vary the density, Fig. 2 shows just the bar plots. In
case of DTF, these are averaged over 100 instances. Fig. 3 shows the change in run-time
with different expansions within a sweep of alpha-expansion.

Finally, note that most timing axes are in log-scale and thus any differences are fairly
significant. We now summarize our findings.

5.1 Take Home Messages

1. Choice of Algorithm Matters. In all applications, the fastest algorithms is orders of
magnitude faster than the slowest algorithm.

2. BK Scales Poorly with Density. Fig. 1 shows that the motivating hypothesis of this
study is correct. In a number of cases (Synthetic, Deconv, 3Dseg) BK starts out fairly
competitive at low densities but very quickly becomes the slowest algorithm, some-
times even slower than DF.

3. New Kids in Town: IBFS and HPF. In a number of applications we considered,
both IBFS and HPF significantly outperform BK both in terms of maxflow time and
maxflow+init time, IBFS more consistently so than HPF. For instance, our experiments
seem to suggest that the ALE implementation could be made 2x faster simply by
switching to IBFS or HPF, at no loss in accuracy. While the number of instances in
each application might be limited, the consistency of the results certainly provides
evidence for this claim.

4. Clever Data-structures Matter. Different implementations use vastly different inter-
nal representations and thus initialization times vary. In a number of applications, the
initialization times dominate maxflow times, especially as the graphs become denser
and the data-structures become heavy. We found the data-structures used by BK to
be particularly efficient. In a number of applications (see e.g. SuperRes, Texture-
Restoration), BK maxflow time is longer than IBFS but the maxflow+init time is
shorter. However, this may not be too relevant for applications in video where the
data-structures may be initialized once and maxflow called repeatedly.

5. Counter-Intuitive Findings. We report a couple of counter-intuitive findings. Chan-
dran and Hochbaum [7] found HPF-LO (LIFO and FIFO) to consistently outperform
HPF-HI (LIFO and FIFO). In ALE experiments, we find the opposite to be the case,
by a significant margin. We believe this has to do with the particular kind of hierarchi-
cal graph structure constructed in ALE, but this requires further examination. We also
found DF to perform surprisingly well on ALE.

Citation
Citation
{Chandran and Hochbaum} 2009
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(a) DTF Graphs: Maxflow Time.
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(b) DTF Graphs: Maxflow+Init Time.
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(a) SuperRes Graphs: Maxflow Time.
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(b) SuperRes Graphs: Maxflow+Init Time.
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(a) Texture-Restoration Graphs: Maxflow Time.
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(b) Texture-Restoration Graphs: Maxflow+Init Time.

Figure 2: Run-times on various applications: (a) shows maxflow time and (b) shows
maxflow+initialization time.
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(b) Maxflow+Init time.
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Figure 3: Run-time on ALE as a function of α-Iterations.
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6 Conclusions and Future Work

In summary, we compared a number of max-flow algorithms on representative computer
vision problems. Among other things, we found that the most popularly used implementation
of Kolmogorov [5] is not in fact the fastest algorithm available, which was surprising at least
to the authors. We hope our findings will be useful to the community at large. There are
a number of ways in which this comparison could be extended – most notably to include
multi-core and distributed implementation like [10, 22, 33, 33], which become necessary as
soon as the graphs become too large to hold in memory. We plan to pursue this direction.

Acknowledgements. We thank Pushmeet Kohli for complaining about the lack of such a
comparison; Lubor Ladicky for answering our questions about ALE; Andrew Delong for
answering our questions about the 3D segmentation instances; and Sameh Khamis for an-
swering our questions about Region Push-Relabel. A significant portion of this work was
done while Tanmay Verma was an intern at TTI-Chicago.
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