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Motivation. Over the past two decades, algorithms for finding the maxi-
mum amount of flow possible in a network (or max-flow) have become the
workhorses of modern computer vision and machine learning — from op-
timal (or provably-approximate) inference in sophisticated discrete mod-
els [2, 12] to enabling real-time image processing [16]. Perhaps the most
prominent role of max-flow is due to the work of Hammer [10] and Kol-
mogorov and Zabih [12], who showed that a fairly large class of energy
functions — sum of submodular functions on pairs of boolean variables —
can be efficiently and optimally minimized via a reduction to max-flow.
Max-flow also plays a crucial role in approximate minimization of energy
functions with multi-label variables, triplet or higher order terms, global
terms, and terms encoding label costs.

Given the wide applicability, it is important to ask which max-flow
algorithm should be used. There are numerous algorithms for max-flow
with different asymptotic complexities and practical run-time behaviour.
Broadly speaking, there are three main families of max-flow algorithms:

1. Augmenting-Path (AP) variants: algorithms [1, 5, 6, 7, 9] that
maintain a valid flow during the algorithm, i.e. always satisfying
the capacity and flow-conservation constraints.

2. Push-Relabel (PRL) variants: algorithms [4, 8] that maintain a pre-
flow, i.e. satisty the capacity constraints but may violate the conser-
vation constraints to have flow excess at nodes (but never a deficit).

3. Pseudoflow (HPF) variants: algorithms [3, 11] that maintain a
pseudoflow, i.e. satisfy the capacity constrains but may violate the
conservation constrains to allow flow excess and deficit at nodes.!

Boykov and Kolmogorov [1] compared AP and PRL algorithms on a num-
ber of computer vision problems, and found that their own algorithm (BK)
was the fastest algorithm in practice, even though they could only prove
a very loose asymptotic complexity bound of O(n?mC), where n is the
number of nodes, m is the number of edges and C is the max-flow value.

Goal. The central thesis of this work is that since this comparison a
decade ago, the models used in computer vision and the kinds of inference
problems we solve have changed significantly. Specifically, while [1] only
considered 4-connected grid MRFs, the models today involve high-order
terms, long-range connections, hierarchical MRFs and even global terms.
The effect of all these modifications is to make the underlying max-flow
graph significantly denser, thus causing the complexity of the algorithm
of [1] to become a concern. It is time to revisit this comparison.

Contribution. The goal of this paper is to compare the runtimes of differ-
ent max-flow algorithms, to investigate if the conclusions of Boykov and
Kolmogorov [1] are still valid for current-day dense problems, and find
out which algorithm is most suited for modern vision problems. One key
contribution of our study is that it includes recently proposed algorithms
— Pseudoflow [3, 11] and Incremental Breadth-First-Search (IBFS) [9] —
which were not developed at the time [1] was written, and thus were ab-
sent from their comparison.

Problems. We tested a number of max-flow algorithms on the following:

1. Synthetic Instances. We created synthetic max-flow graphs with
a basic grid structure and randomly added long-range edges de-
pending on a density parameter.

2. ALE Graphs. We used the max-flow graphs created during alpha-

expansion by the Automatic Labeling Environment (ALE) of Ladicky

et al. [13] on PASCAL VOC 2010 segmentation images.

3. Deconvolution. We used the QPBO max-flow graph on the binary
image deconvolution CRF instance from Rother et al. [15]. This is
an extremely dense graph and the problem is not submodular.

'Interestingly, the key difference between Push-Relabel and Pseudoflow algorithms is not
the concept of pseudoflow rather the admissibility of certain push schemes.

4. Super Resolution. We used the QPBO max-flow graph on the
super-resolution CRF instances of [15].

5. Texture Restoration. We used the QPBO max-flow graph on the
Brodatz texture D103 model from [15].

6. DTF Graphs. Decision Tree Field (DTF) [14] is a recently intro-
duced model that combines random forests and conditional random
fields. We used the 100 instances provided by Nowozin et al. [14]
and saved the QPBO-graphs to file.

7. 3D Segmentation. Finally, we also evaluated all algorithms on
the standard benchmark for such studies, the binary 3D (medi-
cal) segmentation instances from the University of Western On-
tario http://vision.csd.uwo.ca/maxflow—data/.

We note that all of the previous studies were restricted to 3D segmenta-
tion, and problems 2-6 have never been used to evaluate max-flow algo-
rithm, yet they are in some sense more representative of modern problems.

Findings: Our paper has the following findings:
1. Choice of Algorithm Matters. In all applications, the fastest algo-
rithms is orders of magnitude faster than the slowest algorithm.

2. BK Scales Poorly with Density. Our results show that the mo-
tivating hypothesis of this study is correct. In a number of cases
(Synthetic, Deconv, 3Dseg) BK starts out fairly competitive at low
densities but very quickly becomes the slowest algorithm.

3. New Kids in Town: IBFS and HPF. In a number of applications
we considered, both IBFS and HPF significantly outperform BK,
IBFS more consistently so than HPF.

4. Clever Data-structures Matter. We found the data-structures
used by BK to be particularly efficient. In a number of applica-
tions (see e.g. SuperRes, Texture-Restoration), BK maxflow time
is longer than IBFS but the maxflow+initialization time is shorter.

We hope that the results of our study guide practitioners in picking the
correct implementation for their problems.
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