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Abstract

Most contemporary object detection approaches assume each object instance in the
training data to be uniquely represented by a single bounding box. In this paper, we go
beyond this conventional view by allowing an object instance to be described by multiple
bounding boxes. The new bounding box annotations are determined based on the align-
ment of an object instance with the other training instances in the dataset. Our proposal
enables the training data to be reused multiple times for training richer multi-component
category models. We operationalize this idea by two complementary operations: bound-
ing box shrinking, which finds subregions of an object instance that could be shared;
and bounding box enlarging, which enlarges object instances to include local contextual
cues. We empirically validate our approach on the PASCAL VOC detection dataset.

1 Introduction

(a) 4 “bicycles”, no correspondence (b) 4 “bicycles” with correspondence

Figure 1: Four images taken directly from the PASCAL VOC dataset with human-annotated bounding boxes
(green). (a) Despite each of the four instances having the same label (“bicycle”), their bounding boxes are not
aligned so they cannot be used together as training data for a single classifier. (b) By bringing the instances into
correspondence (red boxes), we can now use them to provide more training data to a classifier. This is especially
important for heavily occluded/truncated instances, where data shortage is a big problem.

Consider the task of building a sliding-window object detector. The standard learning-
based approach is to first turn each human-labeled bounding box into a feature vector using
some feature descriptor, e.g. HOG, and then train a classifier, e.g. SVM, on a stack of these
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Figure 2: (left) A bicycle instance with its ground-truth bounding box shown in solid green. (center) Four (of
the 25) subcategories discovered by our approach (few sample instances within each subcategory are shown). We
allow the bicycle instance to be used multiple times with different bounding box representation for training the
subcategory models. The different bounding box extents used per subcategory model are color coded accordingly
e.g., subcategory3’s match is shown using red dotted box, subcategory4’s match shown in red dashed box, etc.
(right) Subcategory1 shown after adaptively enlarging the bounding box to include local contextual cues around it.

feature vectors to discriminate them from the rest of the visual world. This is a reasonable
strategy for older datasets, such as “INRIA person”, where object instances are largely in
correspondence, i.e. aligned such that each feature vector dimension has the same visual
meaning for all object instances. However, modern datasets, such as PASCAL VOC [21], are
much less restricted and do not guarantee good correspondence, with often huge variations
between annotated bounding box instances, as can be seen on Figure 1(a).

The way modern approaches usually tackle this problem is by using mixture models [2,
8, 15, 30]. The idea is to somehow segregate instances within a category into disjoint groups
(subcategories) and then train separate classifiers for each such subcategory. Each subcate-
gory has reduced appearance diversity (via improved alignment), leading to a simpler learn-
ing problem. The recent success of the discriminatively-trained mixture model framework
of Felzenszwalb et al., [8] has led to the wide popularity of such models for object detec-
tion [14, 17, 18, 20, 23]. Applying such model to the four images in Figure 1(a) would
likely result in each being assigned to a separate subcategory and trained with others of its
kind. While reasonable, this assumes that a lot of training data is available for each subcate-
gory. But this is often not the case, especially for occluded/truncated instances (to paraphrase
Tolstoy: all good instance look the same, each occluded instance is occluded in a different
way).

What we propose in this paper is the idea of training data reuse. Conceptually, we would
like to allow different object subcategories to be able to share (subregions of) each others
training instances by providing extra correspondences between instances that were not part
of the original human-supplied bounding box annotations, as shown in Figure 1(b). We
operationalize this by two complementary operations: bounding box shrinking, which aims
to find subregions of an instance that could be shared; and bounding box enlarging, which
aims to create new subcategories by enlarging instances to include their local context. We
show that these operations create more training data for each subcategory, and thus improve
object detection performance, especially for occluded/truncated instances.
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Figure 3: Given four instances from the profile-view horse subcategory (black bounding box indicates ground-
truth), latent bounding box fitting method [8, 27] searches for the box representation (red box) that best aligns with
the rest of the instances. In this case, the tail of the first horse instance is ignored, while the missing feet of the third
horse are hallucinated by using an extended box.

1.1 Overview
Consider the image shown in Figure 2(left). The human-labeled “bicycle” bounding box is
indicated by the solid green box. Given this ground-truth framing for the object instance, it
is most similar to instances in the “45◦-view bicycle” subcategory, so, in a standard mixture-
model detector, it would be assigned to subcategory1. However, by relaxing the bounding
box framing for this instance, subregions of it can also match to the other subcategory models
(subcategory2, subcategory3, subcategory4) as shown using the red bounding boxes. Fur-
thermore, looking outside the bounding box might also allow us to capture consistencies
in the local context surrounding the object, discovering new subcategories such as “per-
son riding a bicycle” (subcategory5). This observation suggests that by relaxing the human
bounding box annotation, one can allow each training instance to be reused multiple times,
with different bounding box extents. The new bounding boxes can either be cropped or en-
larged versions of the original annotation depending on the alignment with the other training
instances.

Of course, the idea of treating human-labeled bounding box annotations as something
less than “ground-truth” is not new in object detection. In fact the very criterion for eval-
uating detection performance in PASCAL VOC allows for just 50% overlap between the
predicted detection and the ground-truth bounding box to account for poor alignment due
to inaccuracies and arbitrariness of human annotations [7]. In [8, 27], improvement in de-
tection was demonstrated by using latent bounding box fitting, where the human-annotated
bounding box is treated as being partially latent i.e., the bounding box is allowed to move
within a local neighborhood (down to 70% overlap). Intuitively, this can be understood as
locally “wiggling” the bounding box representation such that it best aligns with the rest of
the object instances within a category (or subcategory) as shown in Figure 3.

In this paper, we apply a very similar mechanism, but rather than just making local
adjustments, we use it to search for bounding box representations that capture new corre-
spondences between instances in the training data. The main difference is that the latent
bounding box fitting assumes that each object instance is represented by a single bounding
box belonging to a single subcategory, whereas our aim is to find many different bounding
boxes for the same instance, so that it can be shared across multiple subcategories.

The idea of reusing object instances is particularly attractive in gathering extra data for
subcategories composed of truncated instances. Truncation is a common occurrence in mod-
ern datasets where the object of interest lies partially outside the image area or is occluded
e.g., the bicycle instances in Figure 1. Analogous to the heavy-tailed distribution of object
categories [24], most training instances within a category are in canonical viewpoints and
poses. Due to this lack of sufficient training samples, most detectors do not perform well
on truncated instances. Our approach allows canonical non-truncated instances to be reused,
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providing extra data in training the subcategories corresponding to truncated instances. As
shown in Figure 2, the impoverished bicycle handle subcategory can now use the bicycle
handle from the (more common) frontal-view bicycle instance (see Figure 5 for more exam-
ples).

In the special case where the new bounding box is larger than the object instance, the
extra spatial extent will capture information about the local context of that object. Context
plays an important role in aiding object detection [5]. Information around the bounding
box often provides useful contextual cues (local pixel context [3, 29]). Nonetheless most
sliding-window detection approaches continue to use features computed only within the ob-
ject bounding box to train the classifier. This is because the local context around the bound-
ing box is highly multimodal for the harder PASCAL or MIT-SUN09 datasets e.g., a horse
jumping over a fence appears in a different context compared to a close-up horse shot. How-
ever, this could be overcome by simply using a large number of subcategories, as we will
show in this paper.

1.2 Related Work

The simplest way of reusing instances is by perturbing existing instances [8, 12, 16, 22] e.g.,
creating shifted, rotated, or mirrored versions. Most related is the recent work on instance-
sharing [10, 18, 19, 28], with the key difference that our focus is on reusing instances within
the same category and dataset. Also related are the works on transfer learning, where the
idea is to reuse data via sharing model parameters or features [11, 24, 31].

There have been a few recent works addressing truncation. Girshick et al., [13] pro-
posed an extension of the deformable parts model of Felzenszwalb et al., [8]. However, their
approach involves a hand-defined grammar specific for ‘person’ class. The training proce-
dure described in [26] involves additional supervision as it requires manually extending the
bounding boxes to indicate how far each truncated box ought to extend into the boundary
region (and thus presents results only for two of the 20 VOC classes).

There has been a renewed interest towards incorporating local contextual cues [17, 23,
25] for training object models. In [23], detectors are trained for visual phrases that are
composed of objects and the typical context surrounding them e.g., “person riding horse”,
“dog lying on sofa”, etc. However their proposed method requires human-annotation of the
phrases. In [17], adaptive local context models around the object of interest are separately
learned and subsequently used to post-process detection results. We focus on integrating the
contextual information directly into the detector, rather than post-processing the detection
results.

2 Approach

We begin with the latent SVM based mixture model framework introduced in [8] and then
describe details specific to our approach. Consider a classification problem with a training
dataset of n labeled examples D = (< x1,y1 >,. . . ,< xn,yn >), with yi ∈ {−1,1}. We would
like the examples to be clustered into K disjoint subcategories, and separate classifiers to be
trained per subcategory. The subcategory memberships zi are treated as latent variables. The
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formulation in [8] uses the following objective function:

argmin
w

1
2

K

∑
k=1

||wk||2 +C
n

∑
i=1

εi, (1)

yi.si,zi > 1− εi, εi > 0, (2)
zi = argmax

k
si,k, (3)

si,k = wk.φk(xi)+bk, (4)

where wk denotes the separating hyperplane for the kth subcategory, φk(xi) corresponds to the
feature representation of an instance i in subcategory k, si,zi indicates the score for instance
i corresponding to the zith subcategory, and C controls the relative weight of the hinge-loss
term. Equation (3) is referred to as the latent (discriminative) reclustering step where the
latent cluster assignments zi are iteratively estimated given the model parameters wk learned
in the previous iteration.

Calibration. The output scores si,k are assumed to be calibrated appropriately for computing
the argmax in (3). [4] introduced a calibration step into the original LSVM formulation (1)
as:

argmin
w,A,B

1
2

K

∑
k=1

||wk||2 +C1

n

∑
i=1

εi +C2

K

∑
k=1

Lk, (5)

zi = argmax
k

gi,k, gi,k =
1

1+ exp(Ak.si,k +Bk)
, (6)

Lk =
n

∑
i=1

ti loggi,k +(1− ti) log(1−gi,k), ti = Or(Wi,k,Wi), (7)

where gi,k is the calibrated version of the raw SVM score si,k, [Ak,Bk] are the sigmoid pa-
rameters, Lk is the logistic loss function for estimating the sigmoid parameters and Or(., .)
denotes the overlap score. An alternating minimization approach is used for solving it. Given
the latent assignment of object instances to subcategories zi, detectors wk are first trained for
each subcategory. Fixing the detectors wk, and the latent assignments zi, the sigmoid param-
eters Ak,Bk are learned. Finally the detector wk and the sigmoid Ak,Bk parameters are fixed
to update the latent assignments zi.

2.1 Shrinking Ground-truth Boxes
Our key insight is that it is possible to modify the latent reclustering step in a simple way
so as to generate additional samples from a single training instance. The reclustering step
involves (i) sliding the K subcategory detectors trained in the previous iteration on the image
containing the human-annotated bounding box i and (ii) picking the highest-scoring detec-
tion window for each subcategory Wi,k (with score si,k) that has at least T % overlap with the
ground-truth window Wi i.e., Or(Wi,k,Wi) > T where Or(W1,W2) = |W1∩W2|

|W1∪W2|
∈ [0,1] denotes

the overlap score [1]. Our key modification to the reclustering step is that the formulation in
(1) [8] keeps only one of the K detection windows Wi,k, namely the box Wi,zi with the highest
score across all subcategories, while we keep all the K windows as long as they pass the
overlap test. With this modification, we potentially generate up to K new training samples
from each training instance, each of them being aligned to one of the subcategories. We
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set T to a low value (10%1, instead of 70% used in [8]) to encourage valid detections that
may have low overlap over an untruncated instance. For example, in the case of the instance
shown in Figure 2, the red dotted bounding box corresponding to the bicycle handle will be
a valid detection for the bicycle handle subcategory model (subcategory3).

In order to use the multiple samples generated per training instance at each iteration
(instead of a single one), we introduce a soft indicator vector βi = [βi,1, . . . ,βi,k, . . . ,βi,K ] of
length K × 1 into the optimization problem defined in (1). The value of βi,k represents the
contribution of instance i towards subcategory k and is constrained to range between 0 and
1, with 0 indicating no contribution, and 1 indicating full contribution towards updating the
subcategory model wk. This is formulated as the following objective function:

argmin
w,β

1
2

K

∑
k=1

||wk||2 +C1

n

∑
i=1

K

∑
k=1

βi,kεi,k +C2

n

∑
i=1

||1−βi||, (8)

yi.si,k > 1− εi,k, εi,k > 0, (9)
si,k = wk.φk(xi)+bk, (10)

0 ≤ βi,k ≤ 1. (11)

βi,k are initialized using the solution of the previous LSVM optimization problem from (1):
βi,k = 1 if k = zi or gi,k otherwise i.e., all instances originally assigned to the subcategories
with their ground-truth bounding box representation will have their contributions set to 1
since they will be fully used, while the samples obtained by describing an instance with new
(contracted) boxes will have their β between 0 and 1. Since gi,k is the calibrated SVM score,
its value always lies between 0 and 1. The last term in (8) is a regularizer over the indicator
vector, which encourages each instance to be reused across multiple subcategories i.e., high
regularizer signifies βi set close to unity.

Solving the optimization problem in (8) for w and β jointly is a non-convex problem. We
use an iterative algorithm based on the fact that solving for β given w and for w given β are
convex problems. Note that setting the β ’s to zero for the new samples (those obtained by
relaxing the human-annotation) in the above optimization problem simply returns the origi-
nal LSVM solution.

Implementation details. For solving (8) in our experiments, we iterate only once, as it is
sufficient to generate new instances once. Also for improving computation time, we thresh-
old each β so that it will either be 0 or 1. We empirically observed that it is possible for an
instance to be reused multiple times with the same bounding box extent, e.g., in the case of
the bicycle category, the profile left-view as well as the right-view subcategories confidently
score profile view bicycle instances (either left or right facing) with the same bounding box
extent. As a result, they both drift towards each other. In order to avoid this drift, we
non-max suppress2 the top detections across subcategories that have high overlap with each
other. In order to avoid detection windows W k

i that stride too far outside the ground-truth
Wi, we supress detection windows that have high non-overlap score with the ground-truth
NOr(Wi,k,Wi) = Wi,k−|Wi,k∩Wi|

Wi
.

1We empirically observed that typical truncations cover at least 10% of an unoccluded fully visible object.
2Given multiple overlapping detections, they are sorted by their score and the highest scoring detection is greed-

ily selected while skipping those that have at least 50% overlap with a previously selected detection.
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2.2 Enlarging Ground-truth Boxes
As the object instances within each subcategory are tightly aligned in the appearance space,
the local regions around them would also be aligned. Therefore we determine the extent
of the local region to grow the box adaptively based on the image statistics containing the
subcategory instances. Given the object instances within a subcategory, we determine the
largest extent λ = [λx1 ,λy1 ,λx2 ,λy2 ] to which the human-annotated bounding box can be
extended (on all four sides) such that the enlarged box is contained entirely within at least
80% of the images in the subcategory. This is done by computing the distance to the image
boundary along each side and picking the largest value not exceeding the extent in at least
80% of the instances. All the bounding boxes within the subcategory are grown by this
margin:

x′1 = x1−λx1W, x′2 = x2 +λx2W y′1 = y1−λy1H, y′2 = y2 +λy2H, (12)

where W = x2 − x1 and H = y2 − y1. Figure 6 displays some of the subcategories with their
extended bounding boxes. We use the extended bounding boxes as training instances for
learning the subcategory models as described in Eq (1). The model dimensions for each sub-
category are also extended by a similar margin as in Eq (12) to account for the bounding box
extension. We initialize the model using the solution of the previous (unextended bounding
box) LSVM optimization function.3 We emphasize that the latent refitting step during the
reclustering process (Eq 3) again plays a crucial role in fixing any misalignment of the ex-
tended boxes derived from the initialization step (12) i.e., individual boxes can be adjusted
so as to improve alignment with the rest of the instances within the subcategory.

At testing time, we use the extended subcategory models for detecting objects in the
conventional sliding-window paradigm. However, prior to evaluation, we shrink the candi-
date detection windows so as to comply with the evaluation protocol of having at least 50%
overlap with the human-annotated (ground-truth) bounding box.

2.3 Initialization
A key step for the success of a mixture model approach is to generate a good initialization of
the subcategories. Previous approaches have considered different strategies for initializing
subcategories: while some have used extra ground-truth annotations e.g., viewpoint [2, 14],
others have relied upon heuristics e.g., aspect-ratio [8]. In [4], it was observed that the com-
mon insight shared amongst the different methods is to partition the data such that instances
that are visually similar are clustered together. Based on this observation, appearance-based
clustering was directly used for initializing the subcategories.

We follow the approach in [4], where all the positive instances within a category are
warped to a canonical size for extracting HOG features of fixed dimension, and then unsu-
pervised clustering in this feature space is performed to initialize the subcategories.

3 Experimental Analysis
We evaluated the performance of our approach on the PASCAL VOC 2007 dataset [6]. We
used the standard PASCAL VOC comp3 test protocol, which measures detection perfor-
mance by average precision (AP) over different recall levels. Our experiments are based on

3The central region of the extended model is initialized using the model from the previous step and the extended
regions are initialized with zeros.
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Figure 4: Performance improvement offered by our approach over the baseline (x-axis: 20 VOC classes, y-axis:
difference in A.P.). The numbers on top of the blue bar show the percentage increase in the number of data samples
(generated via relaxing the human annotation).

Figure 5: Subcategories composed of only a few instances, specifically in case of truncation, can gather more data
from other training examples. Each row displays (left) a sample training instance from a subcategory, (right) new
samples generated from existing training instances. Red box is the new sample, green box is the human annotation.

the state-of-the-art detector of Felzenszwalb et al., [9]. As our baseline system, we use the
detector initialized using appearance-based clustering as used in [4] (with K = 25 subcate-
gories). This baseline system with appearance-based clustering used in [4] performs better in
comparison to the aspect-ratio based clustering used in [9] (relative improvement of 10.5%
across the 20 classes).

Figure 4 compares the results obtained using our approach with respect to the baseline
for the 20 PASCAL object categories. The first two bars show the improvements achieved
by the shrinking and the enlarging steps respectively. The mean relative improvement (over
the baseline) across 20 classes for shrinking is 6.8%, while for enlarging is 5.6%. We also
evaluated the result obtained by combining the final subcategory models from each and eval-
uating them together. The third bar displays the improvements offered by this combined
system. The shrinking and enlarging ideas are complimentary to each other and combining
them together offers additional boost in performance (mean relative improvement of 12.8%).

Effect of shrinking human annotation. As observed in Figure 4, our shrinking approach
almost always improves the results of the baseline system, except for a marginal drop in the
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Figure 6: Human-annotated bounding boxes (green box) are automatically enlarged (red box) to leverage local
contextual cues (adapted to the subcategory). There is a wide variation in the types of context captured per subcat-
egory. (left) row1: rail tracks for train, row2: wall for sofa, row3: horizontal fence and vertical side bars for horse,
row4: sidewalk for bus. (right) row1: people seated at dining table, row2: grass and sky for airplane, row3: person
riding bicycle, row4: dining table around a chair. Notice that the local cues do not necessarily correspond to other
annotated objects and could include unlabeled regions e.g., rail tracks for train.

case of the car and person category. Atop the blue bar, we show for each class the percentage
increase in the number of samples used for training the object model. On average (across the
20 classes), there is a 40% increase in the number of samples used. Figure 5 displays some
of the qualitative results for a few impoverished subcategories. We also analyzed the perfor-
mance gain specifically for detecting truncated instances. We measured the change in A.P. by
exclusively evaluating the detector on the truncated instances before and after using the ad-
ditional samples. We noticed a 30% relative improvement in the mean A.P. across 20 classes.

Effect of enlarging human annotation. As observed in Figure 4, our adaptive enlarging
scheme improves performance for all classes except bottle, plant and sheep. Bottles and
plants are objects that can typically appear in varied contexts and thus the local context
around them can be misleading [5]. Figure 6 displays some qualitative results for a few sub-
categories. Observe that different subcategories capture different types of local context. For
e.g., in case of horse jumping over a fence, the fence and the vertical bars act as discrimi-
native cues in improving the detection of that subcategory. This context would not be valid
for a close-up horse face shot subcategory. Thus a monolithic category-based detector would
not be able to benefit from local context by simply enlarging the bounding box.

4 Conclusion
Current detection approaches assume each human-labeled bounding box to uniquely de-
scribe an object instance. In this paper, we have used the human-labeled bounding box as
only a rough indication of object presence. We described each object instance using multiple
bounding boxes based on its alignment with other instances in the dataset. Our approach
helped in enriching impoverished subcategories with additional data as well as in the in-
clusion of local contextual cues. In our current implementation, we pool detections across
multiple subcategories using a simple sum-pooling based non-max suppression scheme. We
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plan to explore learning the spatial relations between the different subcategories for improv-
ing the pooling step.
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