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Abstract

Building photometric databases usually requires the gathering of images of a still
object under different light source directions. During this process, unexpected artifacts
such as noise, shadows, inter-reflections and other unwanted effects introduced by the
sensibility of the camera may appear along the database, diminishing its consistency as
a whole and therefore its suitability for the purposes of photometric analysis. This paper
describes a method for improving photometric consistency in image databases acquired
under photometric rigs. The main idea of our approach is to build and analyze a lumi-
nance matrix storing the reflectance behavior of each pixel under the different light source
directions. To this end, we propose to fit sinusoidal functions to the singular vectors of
this luminance matrix in order to improve its agreement with Lambertian reflectance.
Experiments demonstrate that our method improves the photometric consistency of the
database, providing stability for the purposes of photometric analysis of the database and
surface shape recovery.

1 Introduction
Estimating 3D shape and reflectance from imagery is a relevant topic in computer vision
and computer graphics, since it simplifies the task of modeling the appearance of objects.
Techniques based on photometric changes, such as the photometric stereo method (PSM),
have proved to be useful for such task by enforcing illumination variations over a still object.
A quick review in the area reveals that issues such as the strategic placement of light sources
[2, 4], the modeling of Bidirectional Reflectance Distribution Functions (BRDF) to handle
non-Lambertian reflectance [8] or shaded regions [1, 7], and the statistical properties of
photometric databases [6] have received major attention in the field.

Similarly, approaches such as the photometric sampling [12] have also been developed
in order to recover shape and reflectance properties through photometric features. The pho-
tometric sampling consists of measuring the response of a still object while a light source,
placed on a turntable, moves around a single circular path. Research efforts in photometric
sampling have been mostly focused on the recovery of surface normals by sine fitting, where
the key idea is to adjust a sinusoidal function to the pixel’s response along the light source
trajectory. Sine fitting has shown a benefit in determining the azimuth angles of the surface
normals as well as in determining specular areas [10, 13].
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Regardless of the approach, however, during the database acquisition process, unex-
pected artifacts such as noise, shadows, inter-reflections and other unwanted effects intro-
duced by the sensibility of the camera may appear along the captured images. As a con-
sequence, the suitability and consistency of the database for the purposes of photometric
analysis is diminished.

This paper describes a method for improving photometric consistency in image databases
acquired under photometric rigs. The main idea of our approach is to build and analyze a
luminance matrix storing the reflectance behavior of each pixel under the different light
source directions. To this end, we fit sinusoidal functions to the singular vectors of the lumi-
nance matrix in order to improve its agreement with Lambertian reflectance. Particularly, the
method aims at finding the most Lambertian segment (sine-like) of an arrangement of pixel
intensities, from which a recovered sine function can further help diminish the corrupted lu-
minance response for each pixel. Our technique can be applied as a corrective pre-processing
step in schemes working with photometric stereo or photometric sampling databases.

The article is organized as follows: in Section 1.1, we describe the previous work re-
lated to our approach; Section 2 introduces the decomposition of the luminance matrix and
the proposed sine fitting technique to improve photometric consistency; Section 3 provides
experimental evaluation, testing our method on both photometric sampling and photometric
stereo databases; finally, conclusions and future work are outlined in Section 4.

1.1 Related work

The idea of fitting sine functions for shape recovery was originally proposed by Nayar et al.
in [12], where they introduced the photometric sampling technique. Their method recovered
shape by relating the sampling of a photometric function with surface orientation, reflectance
and light sources. To this end, the authors proposed to measure (sample) the photometric
response of a still object while a light source, placed on a turntable, moved around a single
circular path.

Saito et al. [13] and more recently Liu et al. [10] borrowed the sine fitting idea of the pho-
tometric sampling to estimate the surface normals of a specular object. Assuming knowledge
of the light source direction, the former described a least-squares fitting procedure applied
on each RGB channel in order to avoid specular regions and calculate surface normals. A
similar procedure using the Hough transform was proposed by the latter.

Miyasaki and Ikeuchi studied the effect of identifying shadows and specular reflections
as outliers [11]. Aided by the Singular Value Decomposition (SVD) and the graph-cut al-
gorithm, the method excluded outliers from the database before performing PSM, i.e., the
pixels in the image that contained the outliers were removed to later apply SVD in a sub-
matrix. A robust PCA approach for removing specularities and shadows in photometric
stereo databases was also proposed in [3].

Compared to previous work, our method considers the sampling of several circles around
the object instead of using a single circular patch. For this reason, the construction of a
luminance matrix is required. We propose to fit sine functions onto the singular vectors of
this matrix rather than performing fitting onto the raw luminance data.

It is important to consider that our work seeks to provide a tool for diminishing photo-
metric consistency departures in databases, so that other approaches aimed at surface shape
recovery, light sources direction estimation, and specularity and shadow removal may benefit
from a correcting database pre-processing step.
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(a) Experimental setting (b) Illumination patterns
Figure 1: Data acquisition process scheme for the photometric sampling database. In (a), the
elements of the photometric sampling database acquisition scheme are shown, while (b) presents a
projection of the light source positions, for four zenith and sixty-five azimuth angles. Separation be-
tween samples was 5◦.

2 Photometric consistency and correction
This section explains the concept of photometric consistency and a sine fitting procedure in-
troduced to improve the consistency of photometric databases. The main idea of our method
is to analyze the luminance response at each pixel in order to locate a Lambertian-like be-
havior on the singular vectors of the luminance matrix. Once the most Lambertian patch
is located along each singular vector, a sine function is fitted on the patch and the singular
vectors replaced with the fitted functions. The procedure is described more in detail in the
next pages.

2.1 Photometric consistency

In order to introduce the concept of photometric consistency let us start with Figure 1, where
the data acquisition process for the photometric sampling database developed in our lab is
depicted. The process was performed by a Mitsubishi PA-10 robotic arm to generate the
illumination changes in accurate concentric patterns around the optical axis of the camera.
A halogen lamp was attached to the end effector of the robot as shown in Fig. 1 (a). An
example of the illumination patterns applied to the data acquisition process are plotted in Fig.
1 (b). For two different surfaces (a mannequin and a human face), a database of k = k1×
k2 images of the observed object under k different light source directions was constructed,
with k1 azimuth angles and k2 zenith angles of the light source direction vector. Since the
illumination changes in zenith away from the camera view usually provoke large shadowed
regions, the zenith sampling was not extended beyond 30o. It is important to remark that,
due to the concentric circle patterns, the set of sampled images should reflect the two main
variations (i.e., changes related to azimuth and zenith) of the light source direction vector at
each trajectory point.

We use the term photometric consistency to refer to the agreement of the captured images
with the illumination changes imposed on the observed object. In other words, if the arrange-
ment of a set of light sources is not arbitrary (supposes certain periodicity), the recorded
image database should reflect the illumination patterns of such lighting arrangement. In
Lambertian reflectance, circular lighting patterns lying on the surface of a sphere, and point-
ing towards the observed object, generate a perfect sinusoidal function (excluding shadowed
regions) along each pixel value. Since most real surfaces do not respect Lambert’s laws,
the recorded luminance at each pixel will depart from the smoothness and shape of a sinu-
soidal signal. Consistency departures may be explained as phenomena inherent to the data
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(a) Mannequin (b) Human face
Figure 2: Photometric consistency. The average image intensity and the average derivative of image
with respect to time are shown as a measure of photometric consistency for the 333 and 260 images
of each database respectively, before and after performing correction on the singular vectors of the
luminance matrix. The average intensity plots include several dark circles, corresponding to those
images whose departure from photometric consistency is the greatest.

acquisition conditions, i.e, noise, inter-reflections, high or low exposure, varying light source
intensity, specular and shadow regions, and even slight movements of the object (in the case
of a human subject). In our method, we aim to project such departures onto sine functions by
a sine fitting strategy on the singular vectors of a luminance matrix, improving photometric
consistency of the database and therefore its suitability for photometric analysis.

Figure 2 presents the average image intensity and the average derivative of image with
respect to time as measures of consistency. Results after applying our method on a database
of a styrofoam mannequin and a human face are presented in (a) and (b), respectively. The
mannequin was matte painted in order to emulate Lambertian reflectance. The figure shows
both consistency measures before (gray line) and after (dark line) applying photometric cor-
rection. In the figure, each cycle represents a change in zenith angle of the illumination
pattern. Note how the human subject presents greater consistency departures than the matte
mannequin, while our method achieves projection of the average image intensity to a sine-
like function in both cases. Additionally, Figure 2 shows with dark circles those images
(or light source directions) whose departure from photometric consistency was the greatest.
For the case of the mannequin, the least consistent lighting arrangement corresponds to the
starting points of the light source while the human subject reveals departures during all the
acquisition process. More detailed explanation about this figure will be later provided using
specific examples in the experimental section.

2.2 Photometric correction

We start this subsection by briefly describing the concept of photometric sampling, as it is
important for understanding the photometric correction step. The principle of photometric
sampling is based on the image irradiance equation for a Lambertian surface, that establishes
the relationship of the surface normals n(u,v)∈R3 and the light source direction l(u,v)∈R3

to calculate the luminance for each pixel in the image: i(u,v) =< n, l >.
In accordance with the gathered images during the data acquisition process, the lumi-

nances of a pixel will draw a sinusoidal function if the illumination variations imposed
around the object are circular, i.e., the different light source direction vectors are circles
lying on the surface of a virtual sphere. The sine curve can be decomposed in the three pa-
rameters: amplitude (A), phase (B) and shift (C) as I(θ) = Asin(θ +B)+C, where I(θ) is
the pixel luminance at each θ variation in azimuth.

The photometric correction commences by generating, for each pixel, a matrix Mk1×k2
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Figure 3: Photometric correction for two different reflectance examples. A mannequin and a
human face are respectively shown in the top and bottom rows of the figure. For each case, the values
in the luminance matrix for a single pixel (marked with a dark dot) are plotted in the second column.
The rest of the columns depict sine fitting results on each vector of the luminance matrix.

storing the k pixel intensity values recorded at each (azimuth, zenith) configuration pair. This
matrix, which we refer to as the luminance matrix, contains the pixel reflectance history
along the two main variations of the light source trajectory. For every pixel, the observed
reflectance may be decomposed by the principal axis of the luminance matrix. The study
of these axis allows identifying regions which best fit a sinusoidal behavior, i.e., close to a
Lambertian behavior. The signal is finally corrected once the sine curve parameters have
been calculated and the signal replaced with a sine function. We use SVD to decompose the
luminance matrix,

M = Uk1×rΣr×rVT
r×k2

, (1)

where r = rank(M). The column and row spaces of M are decomposed into the orthogonal
basis U (left singular vectors) and V (right singular vectors), respectively. The singular
values, contained in the diagonal elements of Σ explain the degree of retained variability in
both right and left singular vectors. In our context U is related to the azimuth variations
while V refers to variations in zenith.

Figure 3 shows a visual sketch of the light source trajectory variations over a surface
normal of the mannequin and the human face. The location of the surface normal is indicated
with a black dot in the first column of the figure. The second column of the figure shows a
plot of the four columns (as four zenith angles were used) of the luminance matrix associated
with the analyzed surface normal. Note how the reflectance of the mannequin at the selected
pixel clearly exhibits a sinusoidal behavior compared to the human reflectance example.

The underlying idea of the image correction method proposed in this article is to find
a suitable representation for maximizing photometric consistency in photometric databases.
To this end, we studied the effect of performing sine fitting in the singular vectors of the
luminance matrix of all image pixels along the database. The singular vectors of the lumi-
nance matrix are preferred against the raw column vectors of the matrix since artifacts or
outliers are likely to be filtered out due to the weighting of singular values. As opposed to
previous work [10, 13], where fitting sine functions on the raw data was used to determine
surface shape assuming knowledge of the light source direction, our method aims to correct
photometric consistency departures through fitting sine functions on the singular vectors of
a luminance matrix.

Since real images may include noisy variations in reflectance (i.e., bottom row in Fig-
ure 3), using least squares for calculating the three sine parameters (amplitude, phase and
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Figure 4: The sinusoidal fitting procedure. The figure illustrates the proposed sine fitting procedure,
based on scanning sine segments through the singular vectors of the luminance matrix.

shift) may lead to poor estimations in the sought parameters, as behaviors departing from
Lambert’s law may occupy a large region of the singular vector. To overcome this problem,
we performed fitting using smaller fixed-sized signal periods starting from each point along
the singular vector, then chose the phase, amplitude and shift parameters appearing in the
majority of the cases. The fitting procedure is roughly illustrated by Figure 4. In the figure,
the leftmost diagram exemplifies the scanning path for a segment of 50 degrees length (ten
separations of five degrees each) of an arbitrary pixel for a synthetic sphere. The second and
third diagrams respectively show the estimated amplitude and phase after fitting a sinusoidal
signal onto each segment. Note how, for each segment scan, the obtained amplitude, phase
and shift are recorded separately. Once all the parameters have been gathered for each scan
evaluation, a single value for each parameter is decided (using the mode interval) and the
complete signal fitting finally performed. This procedure applies to all left and right singular
vectors whose singular value is greater than zero. Finally, the rightmost diagram of Figure 4
shows the fitting result after calculation of the three optimal coefficients.

Once the sine parameters are estimated over each of the singular vectors, a new lumi-
nance matrix M′ = U′ΣV′T is generated to improve photometric consistency on the database.
The new fitted columns of U′ and V′ contain the sine-fitted singular vectors from the original
matrices U and V in Eq. 1.

Let us turn our attention back to Figure 3, where the last four columns show the sine
fitting results on the singular vectors of the luminance matrix (solid lines) and the sine fitting
results on the raw data of the luminance matrix (dotted lines). This comparison is provided in
order to motivate the singular vectors as an appropriate representation for image correction.
The raw data of the luminance matrix is shown in gray for the four cases. The same fitting
strategy shown in Figure 4 was applied to the raw data. Each luminance response is presented
separately so as to isolate the variations in zenith angle, which varies from 15◦ to 30◦. Note
how, for the mannequin responses, there seem to be no major difference in fitting the sine
functions to the singular vectors. This may be due to the matte reflectance of the surface.
Nonetheless, the reflectance responses of the human face indicate a more accurate fitting for
the singular vectors (solid line), specially when the zenith angle departs from the camera
direction (right-most columns of Figure 3).

In order to motivate the singular vectors of the luminance matrix as an appropriate rep-
resentation for photometric consistency, we additionally performed the following tests. In a
first test, 200 subsets were randomly selected from the mannequin database, before and after
correction on both the singular vectors and the raw columns of the luminance matrix. All the
subsets contained seven images from the 65× 4 images in the database. Each image in the
subset was transformed into a long column vector to form a long matrix of seven columns
and SVD was applied to these matrices. Similar to [6], the first three left singular vectors
of this matrix were used to build a surface normal map, later integrated to obtain a corre-
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(a) Non-corrected. (b) Raw data fitted. (c) Sing. vector fitted.
Figure 5: Recovered profiles for the mannequin. The figure reveals an improved consistency in
shape recovery after fitting the sinusoidal function on the singular vectors of the luminance matrix.

(a) Non-corrected. (b) Raw data fitted. (c) Sing. vector fitted.
Figure 6: Surface recovery for a human face. Results after performing correction on the singular
vectors of the luminance matrix provide stability and smoothness to the recovered surface.

sponding surface. The Frankot and Chellappa integration method [5] with Discrete Cosine
Transform (DCT) basis functions was used for the integration step. The results of this ex-
periment are shown in Figure 5, where the profiles of the recovered surfaces are shown for
the 200 subsets. From the figure, the shape variation around the profiles reveals difference
in consistency among the three databases. Although the surface is nearly Lambertian, the
original data profiles in (a) reveal a major disagreement in surface estimations. The raw data
fitted profiles in (b) present some surfaces out of the regular estimations, while in (c) the
consistency of the database suggests an improvement along the 200 integrated surfaces.

A second test presents shape recovery results on the human face database. We selected
the seven images with the biggest departure from the raw and corrected average image in-
tensity, which are marked with a dark spot in Figure 2(b). For each subset, surface shape
recovery was achieved as formerly explained in the previous test. Figure 6 presents the sur-
face reconstruction results from non corrected data (a), from sine fitting onto the raw data (b)
and from sine fitting onto the singular vectors of the luminance matrix (c). The figure reveals
that the image correction clearly benefits the photometric properties of the database, more
particularly, performing sine fitting to the singular vectors of the luminance matrix provides
more symmetrical and smooth results than only fitting sines directly to the luminance matrix.

From figures 5 and 6 we can observe that sine fitting on the singular vectors of the lumi-
nance matrix provides an advantage over sine fitting on the raw luminance data, particularly
for non-Lambertian reflectance. This fact supports the underlying idea of our method, i.e., to
remove photometric consistency departures in photometric databases by using an appropriate
decomposition of the surface normal reflectance.

3 Experimental results
We start this section describing results from the photometric sampling database. Figure 7 de-
picts, with two main panels, for the mannequin and human face cases, the subset of original
and corrected images used for surface shape recovery followed by surface normal integration.
The lighting configuration, shown at the left side of the panels, corresponds to those images
with the greatest consistency departure in the database, i.e., the dark circles shown in Figure
2. The image difference is also provided in both panels. Note how, for the mannequin exam-
ple, the proximity of the light source directions makes it practically impossible to notice the
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Figure 7: Experimental results on the photometric sampling database. The figure presents original
and corrected results for the selected image subsets shown as dark circles in Figure 2.

illumination variation from the visual inspection of the image subsets, while the difference
between original and corrected images reveals the remotion of shadowed areas provoked
by occluded areas between the light with the camera tripod. The benefit from photometric
correction is noticeable by visually comparing the shape recovery results. Particularly, the
remotion of shaded areas allows statistical PSM to determine the contribution of each pixel
in the orthogonal image decomposition, while the smoothness of the results suggest numer-
ical consistency of the SVD. This result is opposed to the spurious noise specially present in
the background of the surface normals obtained from the non-corrected images. As far as the
human face example is concerned, the perceptual difference between the original and cor-
rected images is corroborated by its image difference. Note how the original images appear
darker than their corrected counterparts, which suggests that inter-reflections are diminished
by homogenizing the overall brightness of the dataset. Again, the image differences suggest
that main modifications after correction are related to imposing consistency for illumination
changes. This fact is supported by the surface shape recovery results of the figure. In this
case, the y-axis of the surface normals seem to get the biggest benefit from our method.

We also tested our method using a photometric stereo database. The extended Yale B
database of faces [9] has been acquired using a spherical structure with 64 illumination vari-
ations for images of human faces. We have chosen this database because its spherical setting
is similar to the one utilized in the photometric sampling experiments. For all the cases,
we used the two first zenith angles (concentric circles) of the database, i.e., the luminance
matrix size was 6× 2, considerably smaller than the previous examples on a photometric
sampling database. Once the sine fitting procedure depicted in the previous section was ap-
plied on the database, we picked the innermost six image subset in order to recover shape.
Following the theory of [4], the arrangement of the light sources in this subset is adequate
since it varies uniformly around the azimuth angle and keep its zenith angle fixed. Shape
recovery results are shown before and after (singular vector) correction in Figure 8. From
top to bottom, the figure presents results organized in three panels, for subjects 11, 13 and
16 of the database. Each panel depicts the subset of original and corrected images, its image
difference, estimated surface normals and estimated shape from the subset.

For subject 11 (top panel), a visual comparison of the original and corrected images
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Figure 8: Experimental results on a photometric stereo database. Original and corrected
imagery and their corresponding surface shape estimation results are presented for three
subjects of the extended Yale B database.

reveals imperceptible differences, located mainly around the nose and eyes of the subject.
Despite this negligible difference, the surface recovery is greatly improved for the corrected
data. This can be observed in the overall shape of the surface, which improves smoothness
and stability of fine details around the nose and the eyes. Moreover, the eyebrow area, which
appears concave in the estimated surface from the non-corrected data, becomes convex for
for the corrected case.

The visual inspection of the middle panel (subject 13) reveals a more noticeable differ-
ence between original and corrected images. This difference, majorly located around the
nose area might suggest a slight movement of the subject during the data acquisition pro-
cess. Note also how the third, fourth and fifth image of the subset present a difference in
exposure and, in general, the corrected images appear more uniformly illuminated than the
original subset. These observations are corroborated through the estimated surface normals
and shape recovery for both original and corrected data, where the latter delivers greatly im-
proved results, i.e., the instabilities of the surface, possibly caused by the movement of the
subject, are considerably removed.

Finally, the bottom panel of Figure 8 (subject 16) presents an alternative application of
our method, since one of the images of the subset is severely corrupted, almost missing,
due to problems in the acquisition process. Note how the proposed photometric correction
is capable of recovering the corrupted image. Other improvements can be noticed in the
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surface recovery, around the eyebrow and nose areas.

4 Conclusions
We have introduced an approach for image correction in photometric databases, based on a
sine signal fitting on the singular vectors of a luminance matrix. Experiments demonstrate
that the proposed correction is useful to improve image quality and to provide consistency
on the lighting variation along the database. Future work will address the implementation
of alternative sine fitting methods (RANSAC, Hough transform) to compare efficiency and
performance, as well as the suitability of the method to be incorporated into particular pho-
tometric shape recovery frameworks.
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